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Abstract

Although a powerful emotion affecting behavior, our understanding of regret in
strategic interactions is limited. I argue that because responsibility is central in
the experience of regret but also divided among players in games, people expe-
rience regret differently in games than in individual decision-making. I provide
experimental evidence that, indeed, a player 𝑖’s regret (for not best-responding) is
mitigated through blame put on another player 𝑗 for not playing—when available—a
Pareto-improving (compared to 𝑗’s actual action) best-response to player 𝑖’s action.
Remarkably, feelings of regret and blame elicited (through survey responses) in
certain games predict behavior in vastly different games.
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1 Introduction

Regret theory has been a prominent model in decision theory since its formulation by
Loomes and Sugden (1982) and Bell (1982). It poses that people choose between risky
alternatives anticipating (and trying to mitigate) the regret that their choice may generate
once the initially unknown state of the world is revealed. In the psychology literature,
the importance of regret in decision-making has been discussed since at least Festinger
(1964).1

The research interest on regret should come as no surprise given the evidence that
regret is powerful in shaping behavior. Regret—be it anticipated or realized—has been
shown to play an important role in investment behavior (Lin et al., 2006; Fogel and
Berry, 2006; Huang and Zeelenberg, 2012; Frydman and Camerer, 2016; Fioretti et al.,
2022), health decisions (Koch, 2014; Brewer et al., 2016), gambling (Zeelenberg et al.,
1996; Sheeran and Orbell, 1999; Wolfson and Briggs, 2002), and bidding in auctions
(Engelbrecht-Wiggans, 1989; Engelbrecht-Wiggans and Katok, 2007, 2008, 2009; Greenleaf,
2004; Filiz-Ozbay and Ozbay, 2007, 2010; Ratan and Wen, 2016).

On the policy side, there is evidence that “regret lotteries” provide a non-pecuniary
boost to incentives (Loomes and Sugden, 1987; Zeelenberg, 1999). In regret—unlike in
standard—lotteries, the outcome of the lottery is revealed even if the agent has chosen not
to participate in the lottery. This gives rise to the possibility that the agent will regret
not participating (if it turns out that she would have won). Thus, a regret lottery that is
given as a reward for taking a socially desirable action can offer stronger incentives than
a standard lottery.2 Producers of television game shows like “Deal or No Deal” and “Let’s
Make a Deal” also seem to be well aware of the emotional response that regret lotteries
can generate, and thus, choose to reveal not only the reward that the contestant wins,
but also the prize behind the curtain or inside the box that the contestant has rejected.

Despite the significant impact of regret on decision-making, little is known about how
strategic—as opposed to single-agent—environments mediate the experience of regret,
thereby shaping behavior. When introduced in games, (a player’s) regret has so far been
analyzed as if in a single-agent context with the other players’ actions treated as the state
of the world. I call this the single-agent regret approach. This approach has helped explain
behavior in auctions (Engelbrecht-Wiggans, 1989; Engelbrecht-Wiggans and Katok, 2007,

1A notion of regret can even be traced back to Savage’s (1951) minimax (regret) principle, according
to which an agent chooses the alternative that minimizes her maximum possible regret.

2For more on regret lotteries, see Zeelenberg and Pieters (2004), Volpp et al. (2008a,b), Haisley et al.
(2012), Kimmel et al. (2012), and Imas et al. (2023). A prominent example of a regret lottery is the
Dutch postcode lottery, whose revenue is donated in large part (at least 40%) to charity. The lottery
ticket number is the participant’s postcode, so nonparticipants living in a winning code learn from their
participating neighbors (who share the same postcode) and national television that they would have
won. For additional evidence that people anticipate regret (and adjust their behavior accordingly) in a
variety of settings, see Zeelenberg and Beattie (1997), Sandberg and Conner (2008), and van de Ven and
Zeelenberg (2011).
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2008, 2009; Greenleaf, 2004; Filiz-Ozbay and Ozbay, 2007, 2010; Ratan and Wen, 2016),
the ultimatum game (Zeelenberg and Beattie, 1997), price competition (Renou and Schlag,
2010), the traveler’s dilemma, centipede game, and asymmetric matching pennies (Halpern
and Pass, 2012).

But people may experience regret differently in games than in individual decision-
making. In the latter case, an outcome is exclusively the result of the agent’s decision
and “luck” (the initially unknown state of the world). Feelings of regret can then arise
given the power that the decision-maker has over the outcome. On the other hand, in
a game, the outcome is the result of the interaction of multiple agents, and the other
players’ actions are not an impersonal, random state of the world but rather choices of
real agents.3 In such a setting then, an agent may not experience feelings of regret in the
same way or degree, as she may feel less responsible for the combined result of all players’
actions.

Indeed, responsibility is (i) central in the experience of regret, but at the same time
(ii) divided among players in games. A person’s regret stems from the realization that
if she had acted differently, things would have gone better. However, people are often
more than willing to blame others and deny responsibility. For example, in order to avoid
responsibility, they delegate selfish or unethical decisions (Hamman et al., 2010; Bartling
and Fischbacher, 2011; Oexl and Grossman, 2013). Also, they may blame others even if
they are not responsible (Gurdal et al., 2013). Strategic interactions offer ample room for
diffusion of responsibility and blaming others. Therefore, it is natural to study how regret
and the division of responsibility jointly shape behavior in games.

To this end, and motivated by the extensive evidence on the impact of regret and
the division of responsibility on decision-making, I propose the strategic regret approach.
This approach views (anticipated) regret as mediated by the division of responsibility
(among players) for the outcome of a game.4 In this perspective, blame put on another
player mitigates one’s own regret and self-blame. I build a simple model to derive
testable predictions about how people experience regret and assign responsibility in
strategic environments, and, in turn, how this affects their behavior. I then proceed to
experimentally test these predictions. I show that, if appropriately adjusted to strategic
environments, regret can provide additional novel insights, which are supported by the
experimental results.

I model regret and blame in two-player games in the following way. When player 𝑖 (she)
has not best-responded to player 𝑗’s (he) action, the former tends to experience regret.
However, in cases where player 𝑗 has had available (but did not play) a best-response (to

3Indeed, in Lagnado and Channon’s (2008) experiments, participants rated intentional actions as more
causal and more blameworthy than physical events. “Luck” can also be a factor in games but I restrict
attention to games without chance moves.

4Although for brevity throughout the paper I refer to regret as realized regret, anticipated regret is
what matters.

3



player 𝑖’s chosen action) which if chosen would have also benefited player 𝑖, then player
𝑖’s regret is mitigated through blame put on player 𝑗 (for not playing that best-response).
While I acknowledge that blame is a complex phenomenon that cannot be fully captured
by this modeling assumption, the model still manages to deliver valuable new insights.

This modeling assumption is justified by three main points. First, it is simple. Second,
it is informed by the decision justification (Connolly and Zeelenberg, 2002) and regret
regulation (Zeelenberg and Pieters, 2007) theories, which suggest that regret intensity
is affected by justifications and feelings of self-blame.5 It is then natural to expect the
intensity of self-blame to decrease when someone else is to blame. Last, this assumption
on strategic regret is particularly weak in the following sense. Even when performing
counterfactual thinking, player 𝑖 accepts that player 𝑗 is completely self-interested; she
does not expect him to sacrifice any part of his payoff to benefit her. Thus, when compared
to predictions under standard assumptions on preferences or under single-agent regret,
theoretical results can be thought of as a conservative estimate of the effect that strategic
regret can have.

The findings follow. First, I show that strategic regret gives rise to novel theoretical
predictions, which (i) differ from predictions derived under standard assumptions on
preferences or single-agent regret and (ii) are closer to existing experimental evidence. For
example, strategic regret brings theoretical predictions closer to experimental results in
the traveler’s dilemma introduced by Basu (1994).6

The impact of strategic regret is most pronounced when the effect of the division of
responsibility on the experience of regret is asymmetric for different outcomes of a game.
For instance, consider a stag hunt game as shown below, where 𝜆 > 0,

stag hare
stag 1,1 −𝜆,0
hare 0, − 𝜆 0,0

and suppose that player 𝑖 plays stag while player 𝑗 plays hare.7 In that case, given 𝑖’s
action, 𝑗 could have best-responded by playing stag, causing a Pareto improvement. Thus,
the tendency to blame the other player reduces the intensity with which 𝑖 may regret
playing stag. On the other hand, player 𝑗 regrets not playing stag but has nothing to
blame player 𝑖 for. Therefore, the tendency to blame makes stag more attractive by

5There has been substantive evidence in favor of these theories showing that regret intensity increases
with the feeling of responsibility for having made a wrong decision (e.g., Zeelenberg et al., 1998; Inman
and Zeelenberg, 2002; Pieters and Zeelenberg, 2005). Also, El Zein et al. (2019) argue that regret
mitigation due to diffusion of responsibility is a motive for people to make collective decisions.

6In the traveler’s dilemma, two players simultaneously choose an integer (i.e., amount of money) from
a certain (exogenous) range. Then, each player receives the lowest of the two amounts and, if the two
chosen numbers differ, the player that has announced the lower (resp. higher) number of the two receives
a bonus (resp. penalty). The game is studied in detail in section 4.

7The game is studied in detail in section 4.
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reducing the intensity of regret that it might generate while not affecting the magnitude
of regret that hare might cause.

Second, and most importantly, I provide direct experimental evidence in favor of
strategic regret and show that—apart from aggregate behavior—strategic regret can
also explain subject-level behavior. Consistent with the predictions of strategic regret,
subjects who in certain games tend to more strongly blame the other player and regret less
themselves (i) are more likely to play stag in the stag hunt game and (ii) choose higher
numbers in the traveler’s dilemma (than those less prone to blame).8 Thus, although often
negatively valenced, blame and the division of responsibility can actually induce people
to take socially desirable actions by mitigating those actions’ potential to generate regret.
Perhaps the most striking part of this result is that although the subjects’ tendency to
blame (and thus, regret less) was elicited through survey responses in vastly different
games, these responses have predictive power over the participants’ incentivized play in
the traveler’s dilemma and the stag hunt game.

Last, strategic regret explains Bolton et al.’s (2016) finding that people are more
willing to play stag in a stag hunt game when they play against another person compared
to when the other player’s action is randomly chosen by the computer. The explanation
is that a person that plays stag (i) may, in the former case, blame the other player (and
regret less herself) if he does not also play stag, but (ii) cannot blame the computer in the
latter case. To the best of my knowledge, no other concrete mechanism has been proposed
that explains this finding.

After this introduction, section 2 reviews related literature. Section 3 presents the
model, and section 4 derives the model predictions. Based on these, section 5 presents
the experimental design and results and discusses how strategic regret explains Bolton
et al.’s (2016) finding. Section 6 discusses the results, as well as their robustness and
generalizability. The latter topics are studied in more detail in section A of the appendix.
Section 7 concludes. Appendix B presents supplementary analyses of the experimental
data. Appendices C and D document the experimental procedures. The proofs of all
results are gathered in Appendix E.

2 Related literature

A number of papers have considered regret in games. Renou and Schlag (2010) and Yang
and Pu (2012) study minimax regret equilibria, while Halpern and Pass (2012) develop an

8In the traveler’s dilemma, suppose that player 𝑗 selects a significantly lower number than player 𝑖.
The regret of player 𝑖 (for not undercutting player 𝑗) is mitigated because what happened is partly player
𝑗’s fault. Player 𝑗 could have best-responded by undercutting player 𝑖’s number by exactly one, causing a
Pareto improvement. On the other hand, player 𝑗 regrets not undercutting player 𝑖 by exactly one but
has nothing to blame player 𝑖 for. Thus, the tendency to blame tends to make players choose higher
numbers.
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alternative regret-based solution concept, iterated regret minimization. García-Pola (2020)
combines regret minimization with level-𝑘 reasoning. Other papers have incorporated
regret to study behavior in specific settings. Linhart and Radner (1989), Engelbrecht-
Wiggans (1989), Engelbrecht-Wiggans and Katok (2007, 2008, 2009), Greenleaf (2004),
Filiz-Ozbay and Ozbay (2007), and Ratan and Wen (2016) incorporate regret in bilateral
bargaining and auctions. Zeelenberg and Beattie (1997) find evidence of regret aversion
in the ultimatum game.9 Guo and Shmaya (2023) study a mechanism design problem
where the principal minimizes her worst-case regret.

Accounting for how blame and the division of responsibility affect behavior in games
by mitigating regret is the main contribution of this paper, as neither theoretical nor
experimental work has previously considered this. However, there are a few more differences
from existing theoretical work. For example, in Renou and Schlag (2010), Halpern and
Pass (2012), and García-Pola (2020), the players’ payoffs only depend on regret, while
in my model players care about both baseline (e.g., material) payoffs and regret in the
original spirit of Loomes and Sugden (1982). Also, Halpern and Pass’ (2012) solution
concept does not involve common knowledge or common belief of rationality; it rather only
assumes players to know that the other players are regret minimizers. Renou and Schlag
(2010) allow for inconsistent beliefs, while García-Pola (2020) studies regret under level-𝑘
reasoning. On the other hand, I study standard prediction concepts, namely, (i) a player’s
best-response to exogenous beliefs, (ii) rationalizability, and (iii) equilibrium behavior
with common knowledge of rationality and belief consistency (i.e., a Nash equilibrium).
By doing so, I can juxtapose the predictions of standard solution concepts under strategic
regret against predictions under standard assumptions on the payoffs or under single-agent
regret. This way we will see that strategic regret alone (i.e., without use of alternative
solution concepts) brings theoretical predictions closer to experimental evidence, which
cannot be explained by single-agent regret.

While following the single-agent regret approach, Battigalli et al. (2022) allow players
to care about both baseline payoffs and regret. They study regret in extensive form
psychological games (allowing for chance moves).10 This modeling approach is necessitated
by the fact that in an extensive form game, a player’s strategy is usually not observable (by
the other players) after the game has finished. Thus, the authors leverage the psychological
games framework to model each player’s ex-post beliefs over the other players’ strategies;
these beliefs are central in the player’s counterfactual thinking, which determines their
regret. Here I restrict attention to static games without chance moves, where strategies
are ex-post observable. This removes the need to model ex-post beliefs and allows us to
instead focus our attention on how blame and the division of responsibility affect regret

9Namely, proposers who expected to receive feedback on the responder’s minimum acceptable offer
made lower offers compared to proposers who did not anticipate such feedback.

10Psychological game theory was introduced by Geanakoplos et al. (1989) and further developed by
Battigalli and Dufwenberg (2009).
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and, in turn, behavior.

3 A model of two-player games with regret and blame

3.1 The environment

A (static) game is characterized by a tuple 𝐺 := ⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 , (𝑚𝑖)𝑖∈𝑁⟩. 𝑁 ≡
{1, . . . , 𝑛} is a finite set of 𝑛 players. We will restrict attention to two-player games
(i.e., 𝑛 = 2).11 𝑆𝑖 is player 𝑖’s finite action space and 𝑆 := ×𝑖∈𝑁𝑆𝑖 is the action profile
space. 𝑠 ∈ 𝑆 denotes an action profile and 𝑠−𝑖 ∈ 𝑆−𝑖 := ×𝑗∈𝑁∖{𝑖}𝑆𝑗 an action profile of all
players except 𝑖. 𝑢𝑖 : 𝑆 → R is player 𝑖’s Bernoulli baseline payoff function, which does
not account for regret.12 This is analogous to the choiceless utility function of Loomes
and Sugden (1982). 𝑚𝑖 : 𝑆 → R is player 𝑖’s Bernoulli modified payoff function, which
accounts for regret and blame and is described below.

Denote a mixed action of player 𝑖 by 𝜎𝑖 and the space of player 𝑖’s mixed actions
by Δ(𝑆𝑖). 𝜎𝑖(𝑠𝑖) is the probability with which 𝑖 plays action 𝑠𝑖. The baseline (resp.
modified) payoff of player 𝑖 from a mixed action profile 𝜎 ∈ Δ := ×𝑖∈𝐼Δ(𝑆𝑖) is given by
𝑢𝑖(𝜎) := ∑︀

𝑠∈𝑆 𝑢𝑖 (𝑠)∏︀𝑘∈𝑁 𝜎𝑘(𝑠𝑘) (resp. 𝑚𝑖(𝜎) := ∑︀
𝑠∈𝑆 𝑚𝑖 (𝑠)∏︀𝑘∈𝑁 𝜎𝑘(𝑠𝑘)).13

Modified payoffs. To describe the modified payoffs, we first need to define the blame
payoff 𝑢𝑏

𝑖(𝑠𝑖,𝑠𝑗). This is the payoff that player 𝑖 could have received and blames player 𝑗

for not actually receiving.

Definition 1. The blame payoff for player 𝑖 (she), 𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗), given an action profile (𝑠𝑖,𝑠𝑗)

is the maximum baseline payoff that player 𝑖 can get (by playing 𝑠𝑖) if player 𝑗 (he)
best-responds to 𝑠𝑖 to maximize his baseline payoff, provided that this maximum baseline
payoff of player 𝑖 is higher than her payoff when (𝑠𝑖,𝑠𝑗) is played;14 otherwise 𝑢𝑏

𝑖(𝑠𝑖,𝑠𝑗)
is equal to her payoff under (𝑠𝑖,𝑠𝑗). That is, 𝑢𝑏

𝑖(𝑠𝑖,𝑠𝑗) := max
{︁
𝑢𝑏𝑎

𝑖 (𝑠𝑖), 𝑢𝑖(𝑠𝑖,𝑠𝑗)
}︁
, where

𝑢𝑏𝑎
𝑖 (𝑠𝑖) := max𝑠′

𝑗∈𝑃 𝐵𝑅𝑗(𝑠𝑖) 𝑢𝑖(𝑠𝑖,𝑠
′
𝑗), where 𝑃𝐵𝑅𝑗(𝑠𝑖) := arg max𝑠′

𝑗∈𝑆𝑗
𝑢𝑗(𝑠′

𝑗,𝑠𝑖) is player 𝑗’s
pure best-response correspondence (in baseline payoff terms).

𝑢𝑏𝑎
𝑖 (𝑠𝑖) > 𝑢𝑖(𝑠𝑖,𝑠𝑗) means that player 𝑗 could have chosen an action 𝑠′

𝑗 that would
maximize her own baseline payoff given the action 𝑠𝑖 of player 𝑖 and at the same time
increase player 𝑖’s baseline payoff. I postulate that in this case, player 𝑖 assigns part of

11Section A.1.2 of the appendix extends the model to 𝑛-player games.
12In principle, payoffs given by 𝑢𝑖 need not satisfy any standard assumptions (e.g., players being

self-interested and solely interested in monetary payoffs); strategic regret considerations can be applied in
addition to other behavioral phenomena that 𝑢𝑖 accounts for. However, in the applications considered in
this paper, baseline payoffs will indeed be assumed equal to monetary payoffs (with risk aversion discussed
where necessary).

13Abusing notation, I write both pure and mixed actions inside 𝑢𝑖 and 𝑚𝑖.
14This means that when player 𝑗 has multiple best-responses to 𝑠𝑖, in the counterfactual that 𝑖 considers

in assigning blame to 𝑗, the latter chooses the best-response that is most beneficial to 𝑖.
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the blame for the outcome of the game to 𝑗, which mitigates the intensity of 𝑖’s regret.
Namely, the modified payoff is given by

𝑚𝑖(𝑠𝑖,𝑠𝑗) := 𝑢𝑖(𝑠𝑖,𝑠𝑗) − 𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
(1)

where 𝑟𝑖 measures the regret of player 𝑖 through (i) the realized (baseline) payoff 𝑢𝑖(𝑠𝑖,𝑠𝑗),
(ii) the payoff she would achieve by best-responding, 𝑢𝑏𝑟

𝑖 (𝑠𝑗) := max𝑠′
𝑖∈𝑆𝑖

𝑢𝑖(𝑠′
𝑖,𝑠𝑗), and (iii)

the blame payoff, 𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗).15 Unless otherwise stated, regret is given by

𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
:= 𝛼𝑖 max

{︁
𝑢𝑏𝑟

𝑖 −
[︁
𝛽𝑖𝑢

𝑏
𝑖 + (1 − 𝛽𝑖)𝑢𝑖

]︁
,0
}︁

, (2)

where 𝛼𝑖 ≥ 0 measures the intensity with which player 𝑖 experiences regret.16 𝛽𝑖 ∈ [0,1]
measures the degree to which, when possible, player 𝑖 assigns part of the blame to player
𝑗 ≠ 𝑖 and player 𝑖’s own regret is mitigated. 𝛽𝑖 = 0 corresponds to single-agent regret,
while 𝛽𝑖 > 0 to strategic regret. For 𝛽𝑖 = 0, the regret function is as in Renou and Schlag
(2010), Halpern and Pass (2012), García-Pola (2020), and Battigalli et al. (2022). In
the first three papers, players only care about regret, which, loosely put, corresponds to
𝛼𝑖 = ∞. In Battigalli et al. (2022), players care about both baseline payoffs and regret,
and the modified payoffs are as defined here for 𝛽𝑖 = 0.

Discussion of the strategic regret assumption. Strategic regret is formulated under
weak assumptions, since player 𝑖’s regret is mitigated only if some of the opponent’s
best-responses would have been beneficial to player 𝑖 as well. Even when performing
counterfactual thinking, player 𝑖 accepts that player 𝑗 is completely self-interested. Under
alternative formulations, player 𝑖 could assign blame to player 𝑗 simply due to the
availability of an action—not necessarily a best-response—to 𝑗 that would have led to a
Pareto improvement.

One could however argue that in some cases, player 𝑖 may not assign blame to
player 𝑗 (when he has had available a Pareto-improving best-response), as he may only
unintentionally have not best-responded. Yet, regret is also generated by a player’s own
unintentional non-best-response; it is thus natural to assume that a player attributes
blame to others or oneself using common standards. Also, explicit attribution of blame is
not necessary, as blame can merely be a justification that mitigates player 𝑖’s self-blame.
Last, there is evidence that people blame others for unintentional behavior (Knobe and
Burra, 2006) or even for outcomes that they are not responsible for (Gurdal et al., 2013).

15Notice that—like the expected utility formulation of regret in Loomes and Sugden (1982)—this is an
expected utility formulation of regret and blame. Particularly, even when players deliberately randomize,
a player regrets and blames the other player with respect to their ultimately chosen pure actions. This
formulation of regret is conceptually different from the one in Heydari (2023).

16Section A of the appendix presents results under more general assumptions on 𝑟𝑖.
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3.2 Theoretical prediction concepts

We will study three different types of predictions: (i) a player’s best-response to exogenous
beliefs, (ii) rationalizability, and (iii) Nash equilibrium. In terms of equilibrium behavior,
the following types of equilibria of a game 𝐺 will be studied.

Definition 2. A Nash equilibrium (NE) with baseline payoffs of a game 𝐺 is an action
profile 𝜎* ∈ Δ such that 𝜎*

𝑖 ∈ arg max𝜎𝑖∈Δ(𝑆𝑖) 𝑢𝑖(𝜎𝑖,𝜎−𝑖) for every 𝑖 ∈ 𝑁 . If the cardinality
|supp(𝜎𝑖)| = 1 for every player 𝑖 ∈ 𝑁 , then it is called a pure Nash equilibrium (PNE).

Definition 3. A regret equilibrium (RE) of a game 𝐺 is a Nash equilibrium with modified
payoffs; that is, an action profile 𝜎* ∈ Δ such that 𝜎*

𝑖 ∈ arg max𝜎𝑖∈Δ(𝑆𝑖) 𝑚𝑖(𝜎𝑖,𝜎−𝑖) for
every player 𝑖 ∈ 𝑁 . If the cardinality |supp(𝜎*

𝑖 )| = 1 for every 𝑖 ∈ 𝑁 , then it is called a
pure regret equilibrium (PRE).

With attention restricted to static games without chance moves, the RE concept is
the same as the one considered in Battigalli et al. (2022). I will call a NE with baseline
payoffs simply a NE. Denote by 𝑁𝐸(𝐺) and 𝑅𝐸(𝐺) the sets of action profiles satisfying
definitions 2 and 3 in a game 𝐺, respectively. The corresponding subsets of pure equilibria
are 𝑃𝑁𝐸(𝐺) and 𝑃𝑅𝐸(𝐺), which Proposition 1 shows to coincide.

Proposition 1. For any game 𝐺, the set of pure NE and the set of pure RE coincide,
𝑃𝑁𝐸(𝐺) = 𝑃𝑅𝐸(𝐺).

Thus, regret may alter or augment the set of NE by changing the set of mixed—but
not pure—equilibria. This is because given belief consistency, (strategic) uncertainty
vanishes in pure equilibria. In more detail, notice that by pure best-responding (in baseline
payoff terms) a player both maximizes her baseline payoff and has no regret. Thus, each
player pure best-responding (in baseline payoff terms) is a PRE. Conversely, a pure action
profile not being a PNE means that a player can deviate (to a best-response) to increase
her baseline payoff. But deviating to a best-response also induces no regret. Thus, the
deviation also increases her modified payoff. Therefore, a pure action profile that is not a
PNE is not a PRE either.

But then, can regret alter the set of mixed equilibria, and, if so, when? Proposition 2
states that under single-agent regret, it cannot; in that case, not only the pure but also
the mixed NE and RE sets coincide.17 On the other hand, with strategic regret, the mixed
NE and RE can differ.

Proposition 2. The following statements hold:

(i) If 𝛽1 = 𝛽2 = 0, then 𝑁𝐸(𝐺) = 𝑅𝐸(𝐺) for any game 𝐺.
17This is actually true for 𝑛-player games (studied in section A.1.2 of the appendix). Part (i) of the

proposition replicates the result of Battigalli et al. (2022) for static games without chance moves.
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(ii) However, there exist (𝛽1,𝛽2) ̸= (0,0) and game 𝐺 such that 𝑁𝐸(𝐺) ̸= 𝑅𝐸(𝐺).

In fact, it is easy to see that under single-agent regret, best-response correspondences
are the same as under baseline payoffs. To see this, notice that with single-agent regret,
player 𝑖’s modified payoff becomes 𝑚𝑖(𝑠𝑖,𝑠𝑗) = (1 + 𝛼𝑖)𝑢𝑖(𝑠𝑖,𝑠𝑗) − 𝛼𝑖𝑢

𝑏𝑟
𝑖 (𝑠𝑗), and thus,

arg max𝑠𝑖
𝑚𝑖(𝑠𝑖,𝑠𝑗) = arg max𝑠𝑖

𝑢𝑖(𝑠𝑖,𝑠𝑗), since 𝑢𝑏𝑟
𝑖 (𝑠𝑗) is independent of 𝑠𝑖. Therefore,

compared to standard assumptions on preferences (i.e., baseline payoffs), single-agent
regret does not alter any theoretical predictions. This is however not true for strategic
regret.

4 Theoretical predictions of strategic regret

This section briefly presents our main theoretical results. First, section 4.1 shows that
strategic regret can bring equilibrium predictions closer to existing experimental results.
Next, section 4.2 discusses how strategic regret can explain heterogeneity in strategic
behavior. Namely, it derives predictions about subject-level behavior, which will form the
basis of the experiment presented in section 5.

4.1 Strategic regret reconciles experimental results with equilibrium predic-
tions

Proposition 2 has shown that—unlike single-agent regret—strategic regret does alter the
(mixed) equilibrium set of some games. However, this change could in principal be in the
“wrong” direction. Therefore, we now study whether strategic regret changes equilibrium
predictions in a way that brings them closer to existing experimental results.

Consider the traveler’s dilemma introduced by Basu (1994). Two players simultaneously
choose integers (i.e., amounts of money) in {11,12, . . . ,20}. Then, each player receives the
lowest of the two announced amounts. On top of this, if the two announced numbers are
different, the amount received by the player that has announced the lower (resp. higher)
number is increased (resp. decreased) by a bonus (resp. penalty) 𝑏 > 1. The unique
rationalizable outcome under baseline payoffs (and thus, unique NE) is both players
choosing 11. Under single-agent regret, this remains not only the unique RE (as implied
by Proposition 2), but also the unique rationalizable outcome.

Claim 1. Consider the traveler’s dilemma with single-agent regret, 𝛽1 = 𝛽2 = 0. The
unique RE and unique rationalizable outcome under modified payoffs is (11,11).

However, experimental results show that players in fact choose higher amounts, which
decrease with 𝑏 (e.g., see Capra et al., 1999; Goeree and Holt, 2001).18 Table 1 presents the

18The players’ sophistication seems inadequate in explaining these results, as even game theory experts
choose high amounts (Becker et al., 2005).
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number of RE (including the unique NE) for different values of 𝑏 and regret parameters.
As shown already, the only single–agent RE is (11,11). On the other hand, with strategic
regret (𝛽1 = 𝛽2 > 0) apart from the PNE (which by Proposition 1 is also the unique PRE)
there are mixed RE where players choose higher amounts. Particularly, given 𝛼 and 𝛽,
there is a threshold such that if the bonus/penalty parameter 𝑏 is above that threshold,
only the PNE survives. The threshold is relaxed as 𝛼 and/or 𝛽 increase. Strategic regret
thus brings theoretical predictions closer to experimental results, which single-agent regret
does not.19

Table 1: Number of RE in the traveler’s dilemma for various values of 𝑏 and regret parameters

𝛼 𝛽
𝑏

1.5 2 2.5 3 3.5 4 4.5 5

# of RE

1 0.5 73 67 51 1 1 1 1 1
0.5 0.5 374 121 1 1 1 1 1 1
1 1 138 78 93 31 1 1 1 1

0.5 1 441 109 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1

0.5 0 1 1 1 1 1 1 1 1
Notes: in every row 𝛼1 = 𝛼2 = 𝛼 and 𝛽1 = 𝛽2 = 𝛽. The lrs algorithm (Avis et al., 2010) is used
for equilibrium computation. All RE are symmetric.

4.2 Strategic regret predictions about subject-level behavior

We conclude that strategic regret can help reconcile theoretical predictions with aggregate
observed behavior. But can it offer insights into subject-level behavior? To answer this
question, we will now derive predictions about how a player’s attitudes towards regret
and blame shape their behavior (i.e., best-response correspondence) in the (i) traveler’s
dilemma and (ii) stag hunt game. We will see that strategic regret predicts that players
who tend to blame more (and thus, regret less) (i) choose higher numbers in the traveler’s
dilemma and (ii) are more willing to play stag in the stag hunt game (with hare being a
safe option). In the experiment of section 5, participants played one-shot versions of these
games, so non-equilibrium predictions are particularly relevant for the development of our
hypotheses.

Both games exhibit substantial heterogeneity in terms of participant behavior in
existing experiments, which makes a model that explains subject-level behavior most
useful. At the same time, the two games are strategically very different: the traveler’s

19Section A.1.1 in the appendix shows that strategic regret bridges the gap between experimental
findings and equilibrium predictions also in the Kreps game. It also provides intuitive comparative statics
with respect to changes in the baseline payoffs in that game.
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dilemma is dominance-solvable—at least under standard assumptions on preferences, while
the stag hunt game is a coordination game.

4.2.1 The traveler’s dilemma

Claim 2 shows that outside equilibrium analysis, a player 𝑖’s best-response (in terms of
modified payoff) to some fixed beliefs increases with the degree 𝛽𝑖 to which the player
tends to blame the other player. This is because the only case where 𝑖 blames player 𝑗

(and thus, experiences reduced regret) is when 𝑗 chooses a number that is lower than 𝑖’s
by more than 1. Thus, blame tends to make players choose higher numbers.

Claim 2. Let regret be given by 𝑟𝑖(𝑢𝑖,𝑢
𝑏𝑟
𝑖 ,𝑢𝑏

𝑖) := ̃︀𝑟𝑖(𝑢𝑏𝑟
𝑖 − [𝛽𝑖𝑢

𝑏
𝑖 + (1 − 𝛽𝑖)𝑢𝑖]) for somẽ︀𝑟𝑖 : R+ → R+ with ̃︀𝑟′

𝑖 ≥ 0 and ̃︀𝑟′′
𝑖 ≤ 0. Then, in the traveler’s dilemma, given any

conjecture 𝜎𝑗 over player 𝑗’s action, player 𝑖’s best-response is non-decreasing in 𝛽𝑖.

Figure 1 plots the best-response of player 𝑖 to uniform mixing by player 𝑗 as a function
of 𝛽𝑖 and 𝛼𝑖 under our canonical specification of regret given in (2) for various values of the
parameter 𝑏. Darker grays correspond to higher best-responses. Indeed, the best-response
is increasing in 𝛽𝑖 (for 𝛼𝑖 high enough), but also in 𝛼𝑖 (for 𝛽𝑖 high enough), and decreasing
in 𝑏.

Figure 1: The traveler’s dilemma: best-response of player 𝑖 to uniform mixing by player 𝑗 as a
function of 𝛽𝑖 and 𝛼𝑖
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)︁
is given by (2). 𝜎𝑗(𝑥) = 1/10 for every 𝑥 ∈ {11,12, . . . ,20}. In knife-edge

cases where there are two best-responses, the lowest one is reported.

4.2.2 The stag hunt game

Figure 2 presents a stag hunt game with normalized payoffs, where Λ, 𝜆 > 0.
(stag,stag) and (hare,hare) are the PNE of the game, while there is also a NE in

mixed strategies. The robustness to strategic uncertainty of stag is commonly measured
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Figure 2: A normalized stag hunt game

(a) Baseline/monetary payoffs

stag hare
stag 1,1 −𝜆,1 − Λ
hare 1 − Λ, − 𝜆 0,0

(b) row player modified payoffs

stag hare
stag 1 −(𝜆 + 𝛼1 max{𝜆 − 𝛽1(1 + 𝜆), 0})
hare 1 − (1 + 𝛼1)Λ + 𝛼1𝛽1 max{Λ − 1, 0} 0

by the maximum probability with which player 𝑗 can play hare with stag still being a
best-response for player 𝑖. This probability is called the size of the basin of attraction of
stag; denote it by BAS𝑖.20 Under standard preferences (i.e., baseline payoffs in Figure
2 or 𝛼𝑖𝛽𝑖 = 0), BAS𝑖 = Λ/(𝜆 + Λ), which is not player-specific. With modified payoffs,
BAS𝑖 is player-specific due to 𝛼𝑖 and 𝛽𝑖. Claim 3 studies BAS𝑖.

Claim 3. The size of the basin of attraction of stag for player 𝑖, BAS𝑖, is (i) decreasing
in 𝜆 and increasing in Λ, (ii) increasing in 𝛼𝑖 provided 𝛽𝑖 > 0, and (iii) increasing in 𝛽𝑖 for
𝛽𝑖 ∈ [0, 𝜆/(1 + 𝜆)] and constant in 𝛽𝑖 for 𝛽𝑖 ∈ [𝜆/(1 + 𝜆),1] provided 𝛼𝑖 > 0 and Λ ≤ 1.21

Part (i) shows that the comparative statics of BAS𝑖 with respect to 𝜆 and Λ follow the
same intuition as they do under baseline payoffs. Part (ii) shows that, while both hare
and stag can cause regret (when the other player chooses stag and hare, respectively), the
former type of regret dominates, which makes BAS𝑖 increasing in 𝛼𝑖. Thus, the higher
the importance of regret for a player, the more attractive stag is.

Part (iii) is our main focus. When player 𝑖 chooses stag and 𝑗 chooses hare, the former
can blame the latter. Particularly, for Λ ≤ 1, this is the only case where 𝑖 can blame 𝑗.
Thus, for Λ ≤ 1, the attractiveness of stag to player 𝑖 is increasing in the tendency to
blame, 𝛽𝑖. In the experiment, we will look at stag hunt games where hare is a safe option
(i.e., Λ = 1), so participants with higher tendency to blame are expected to play stag
more frequently.

5 Experimental evidence on regret and blame in games

This section experimentally tests the strategic regret assumption (i.e., that blame assigned
to the other player for not playing a mutually beneficial best-response mitigates regret)
and the ensuing predictions.

20This probability is equal to the probability with which player 𝑗 plays hare in the mixed RE. For a
meta-analysis of experimental work on the stag hunt game and the explanatory power of the basin of
attraction of stag, see Dal Bó et al. (2021).

21If 𝛼𝑖 > 0 and Λ > 1, then BAS𝑖 is increasing in 𝛽𝑖 for 𝛽𝑖 ∈ [0, 𝜆/(1 + 𝜆)] and decreasing in 𝛽𝑖 for
𝛽𝑖 ∈ [𝜆/(1 + 𝜆),1].
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5.1 Experimental design and hypotheses

The sample consists of 202 participants (invited by email) from the subject pool of the
Center for Experimental Social Science (CESS) at New York University.22 Participants
earned on average $21.78. The experiment was programmed in z-Tree (Fischbacher, 2007)
and lasted approximately 90 minutes. The experimental procedure is documented in more
detail in Appendices C and D; here I describe it briefly.

5.1.1 Description of survey-type questions

Each subject was asked to describe their thoughts and emotions after having hypothetically
played a game (from those presented in Figure 3) by indicating their level of agreement
to the statements presented in Table 2 using a Likert scale from 1 (“Not at all”) to 7
(“Totally agree”). These questions comprise the Regret and Blame Scale (RBS), adapted
to the strategic context from the Regret and Disappointment Scale (RDS) of Marcatto
and Ferrante (2008), which was designed for individual decision-making. Disappointment
with the turn of events beyond the subject’s control in RDS is replaced by blame on the
other player for his action in RBS.

Table 2: Composition of the Regret and Blame Scale (RBS)

Question item Response variable name
1. I am sorry about what happened to me. affective reaction
2. I wish I had made a different choice. regret
3. I wish the other player had acted differently. blame
4. I feel responsible for what happened to me. internal attribution
5. The other player is the cause of what happened to me. external attribution
6. I am satisfied about what happened to me. control
7. Things would have gone better if (a) I had chosen
differently, or (b) the other player had chosen differently.

choice between counter-
factuals

In more detail, each participant was asked to answer the RBS questions in the scenario
where as row player they have played (i) 𝐵 and the column player has played 𝐿 in SAR1,
(ii) 𝐵 and the column player has played 𝐿 in STR1, (iii) 𝑇 and the column player has
played 𝐿 in SAR2, and (iv) 𝑇 and the column player has played 𝐿 in STR2.23 Game
SAR1 (resp. SAR2) is the same as STR1 (resp. STR2) except for the column player’s
payoffs for outcomes (𝐵,𝑀) and (𝐵,𝑅) (resp. (𝑇,𝑀) and (𝑇,𝑅)). Given the hypothesized
outcomes, in games SAR1 and SAR2 the column player does not have a best-response (to
the row player’s action) that also increases the row player’s payoff, while in STR1 and
STR2 she does.

22A total of 20 sessions were conducted: 3 sessions with 4 participants each, 3 with 8 participants each,
5 with 10 participants each, 7 with 12 participants each, and 2 with 16 participants each.

23SAR is a mnemonic for single-agent regret, while STR for strategic regret.
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Therefore, responses in the SAR items will function as a baseline and be compared
to responses to STR items.24 According to strategic regret, participants should (in the
scenarios described above) blame more the other player and regret less themselves in the
STR games than in the corresponding SAR ones. The participants’ regret and blame are
measured by items items 2 through 5 and 7. Item 1 measures the affective reaction of
the subject, while item 6 is a control item. The answers to these two items should be
negatively correlated.

Figure 3: Games in reference to which subjects answer the RBS items

(a) Game SAR1

𝐿 𝑀 𝑅
𝑇 5,5 30,10 20,15
𝐶 0,15 10,10 50,5
𝐵 0,20 25,15 40,10

(b) Game SAR2

𝐿 𝑀 𝑅
𝑇 10,15 25,10 25,10
𝐶 15,20 5,15 20,10
𝐵 15,10 20,15 10,20

(c) Game STR1

𝐿 𝑀 𝑅
𝑇 5,5 30,10 20,15
𝐶 0,15 10,10 50,5
𝐵 0,20 25,50 40,40

(d) Game STR2

𝐿 𝑀 𝑅
𝑇 10,15 25,30 25,30
𝐶 15,20 5,15 20,10
𝐵 15,10 20,15 10,20

Notes: the differences between SAR1 and STR1, as well as between SAR2 and STR2 are marked
in red.

One may be reluctant to accept that people can accurately predict their emotions
in a hypothetical setting.25 However, what matters for the theory is anticipated regret.
Thus, it is sufficient that subjects not make any systematic errors (i.e., that depend on
the game at hand) in reporting their regret anticipation.26 Even if one is reluctant to
believe that participants accurately predict emotional states, or even that they submit
their true anticipated regret, it is hard to imagine why there could be systematic errors in
the reporting of regret anticipation.

5.1.2 Experiment timeline

Subjects first completed the RBS survey with respect to SAR1 and SAR2. Then, they
played 8 rounds of the traveler’s dilemma (with the bonus/penalty parameter 𝑏 taking a

24A 2 × 2 game cannot satisfy all of the following three properties at the same time: (i) no action is
(strictly) dominated, (ii) there exists a comparable game that allows for blame where the original game
does not (e.g., like STR1 is comparable to SAR1), and (iii) no action is dominated in the comparable
game either. Thus, 3 × 3 games are used, as seen in Figure 3. In this way, the hypothetical scenarios that
the participants are asked to consider are realistic.

25Indeed, the literature on affective forecasting has found evidence that people often fail to forecast
future emotional states (e.g., see Gilbert et al., 1998).

26For example, they do not over-report their anticipated regret (compared to their true regret anticipa-
tion, not compared to actual regret that would be realized in the hypothetical scenarios) in STR games,
while under-reporting it in SAR games.
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different value in each round) choosing integers in [80,200]. Next, they played 8 rounds of
the stag hung game with a safe option presented in Figure 4 with the cost 𝑐 of playing
stag taking a different value in each round. Then, they played the Kreps game (Kreps,
1989; Goeree and Holt, 2001).27 Finally, they completed the survey with respect to STR1
and STR2.28

Figure 4: A stag hunt game with a safe option

stag hare
stag 200 − 𝑐,200 − 𝑐 100 − 𝑐,100
hare 100,100 − 𝑐 100,100

In an additional treatment, participants first played the traveler’s dilemma, then the
stag hunt game, then completed the survey with respect to SAR1 and SAR2, then played
the Kreps game, and finally completed the survey with respect to STR1 and STR2. This
will allow us to test for order effects (e.g., whether the survey affected behavior in the
incentivized games by priming subjects into thinking about regret and blame). Section B
in the appendix shows that there is no evidence of order effects.

In two additional treatments, instead of the stag hunt game, participants played the
volunteer’s dilemma of Diekmann (1985). The results on the volunteer’s dilemma are
analyzed in section A.1.4 of the appendix. Table 3 summarizes the different treatments.

In all treatments, there was random rematching without feedback between rounds.
Participants were rewarded points for one randomly chosen round of each of the three
incentivized games in each treatment. After they finished playing all the rounds of a
game, participants saw (i) their own action in each round, (ii) the action of the participant
that they were matched with in each round, (iii) which round was randomly selected for
payment, and (iv) the points that they earned.29

5.1.3 Hypotheses

I now describe the hypotheses to be tested. First, we will test whether the availability to
the column player of a Pareto-improving best-response (in STR games) makes the row
player blame the column player more and regret less (than in SAR games).30

27The results on the Kreps game are discussed in section A.1.1 of the appendix.
28The three games were placed in between the SAR and STR portions of the RBS items for two main

reasons: so that participants (i) do not see the similar SAR and STR games too soon one after the
other and (ii) do not consecutively answer too many survey-type questions, which could decrease their
attention. Also, participants were required to spend at least 3 minutes in each game of Figure 3, reading
the hypothetical scenario and filling in the survey in reference to the game.

29The feedback was placed at the end of all rounds of each game, so that it came as soon as possible
after the participants’ decisions (since delayed feedback may alleviate regret), while not allowing for
learning between the rounds of the game. Also, there were no practice rounds.

30Namely, it will be tested whether: (i) the responses to the regret and internal attribution items are
on average lower for STR1 (resp. STR2) than for SAR1 (resp. SAR2), (ii) the responses to the blame and
external attribution items are on average higher for STR1 (resp. STR2) than for SAR1 (resp. SAR2), (iii)
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Table 3: Summary of treatments

Treatment Participants Sessions
RBS SAR → TD → SH → KG → RBS STR 52 6
TD → SH → RBS SAR → KG → RBS STR 48 5
RBS SAR → TD → VD2 → KG → RBS STR 50 5
RBS SAR → TD → VD4 → KG → RBS STR 52 4

Notes: TD, SH, and KG stand for the traveler’s dilemma, stag hunt game, and Kreps game,
respectively. VD2 and VD4 stand for the two-player and four-player volunteer’s dilemma,
respectively.

Hypothesis 1. Participants regret less and blame more (as measured by their RBS survey
responses) in STR games than in SAR games.

Hypotheses 2 and 3 refer to the predictive power of RBS survey responses over
incentivized behavior in games. According to strategic regret, participants with stronger
tendency to blame the other player (and thus, regret less) should choose higher numbers
in the traveler’s dilemma and play stag more frequently.31

The following index will be used in testing these hypotheses. For each subject 𝑖, an
index of blame intensity is calculated as a single principal component from the subject’s
ten RBS survey responses to items 2 through 5 and 7 in the two STR games (5 items for
each STR game):32

Blame Index𝑖 := PC

⎛⎜⎜⎜⎜⎝
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

regret𝑖𝑆𝑇 𝑅𝑗, internal attribution𝑖𝑆𝑇 𝑅𝑗

blame𝑖𝑆𝑇 𝑅𝑗, external attribution𝑖𝑆𝑇 𝑅𝑗,

choice between counterfactuals𝑖𝑆𝑇 𝑅𝑗

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
𝑗=1,2

⎞⎟⎟⎟⎟⎠ .

A high index means that the subject blames more and regrets less. The following
hypotheses will then be tested:

Hypothesis 2. Participants with higher Blame Index choose higher numbers in the
traveler’s dilemma (see Section 4.2.1).
the percentage of subjects that choose (a) in the counterfactual choice question is lower for STR1 (resp.
STR2) than for SAR1 (resp. SAR2), and (iv) the responses to the regret and internal attribution items
are negatively correlated (at a subject level) with the responses to the blame and internal attribution
items—particularly in STR games. Points (i)–(iii) are based on aggregate data, while (iv) tests whether
blame mitigates regret at a subject level.

31This should be particularly true when the tendency to blame is measured by their responses to the
STR—rather than SAR—items. This is discussed in Appendix B.

32choice between counterfactuals𝑖𝑆𝑇 𝑅𝑗 = 1 (resp. = 0) corresponds to the response “(a) I had chosen
differently” (resp. “(b) the other player had chosen differently”). All the loadings in the principal
components have the expected sign (see Table 11 in Appendix B). That is, the blame and external
attribution items (resp. regret, internal attribution, and choice between counterfactuals) have positive
(resp. negative) loadings. This serves as indirect evidence that blame indeed mitigates regret, as
postulated.
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Hypothesis 3. Participants with higher Blame Index are more likely to play stag in the
stag hunt game (see Section 4.2.2).

Even if RBS survey responses are found to predict incentivized play consistently with
strategic regret—which should enhance our confidence that the survey responses are
meaningful, some may still be reluctant to accept survey responses and their predictive
power as strong evidence in favor of strategic regret. Thus, hypothesis 4—which only uses
data on incentivized play, and not survey responses—will also be tested. This hypothesis
is an implication of hypotheses 2 and 3 combined.

Hypothesis 4. Participants who choose higher numbers in the traveler’s dilemma are
more likely to play stag in the stag hunt game.

Section 5.4 presents and tests an additional hypothesis that is derived from strategic
regret and does not employ survey responses either.

5.2 Experimental results

5.2.1 Hypothesis 1: RBS survey responses

We first test hypothesis 1. Figure 5 presents the participants’ average responses for items
2 through 5 and 7.33 All differences are as expected. Participants blame more and regret
less in a game where according to the theory there is room for blame to mitigate regret
(i.e., STR1 and STR2) than in a game where there is no room for blame (i.e., SAR1
and SAR2, respectively). At the same time, Figure 6 shows that within each game, the
responses to the blame and external attribution items are negatively correlated with the
responses to the regret and internal attribution items—particularly in STR games. This
suggests that indeed blame assigned to the other player is the mechanism through which
regret is reduced. Overall, there is strong evidence in favor of hypothesis 1.

5.2.2 Hypotheses 2 and 3: predictive power of RBS survey responses over
incentivized behavior in games

We now test hypotheses 2 and 3. Figure 7(a) and Table 4 show that participants with higher
than median Blame Index choose higher numbers in the traveler’s dilemma (compared
to participants with lower than median Blame Index).34 The differences are statistically
significant across a range of values for the bonus/penalty parameter 𝑏. Particularly, for

33Appendix B studies the affective reaction and control item responses. The two are negatively
correlated, as expected.

34The median Blame Index was calculated for each game separately to ensure a 50%/50% split. That
is, a median Blame Index among the participants that played the traveler’s dilemma was calculated for
the analysis of that game, and another median was calculated among the participants that played the
stag hunt game (which is a subset of those that played the traveler’s dilemma).
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Figure 5: RBS results: regret and blame in SAR versus STR games
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(b) SAR2 versus STR2
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Notes: bars of mean responses with standard error intervals. The panels on the right show
the percentage of subjects that chose (a) “I had chosen differently” in the choice between
counterfactuals item. All differences are statistically significant at the 0.1% level based on (i)
Wilcoxon signed-rank one-sided tests (Pratt’s (1959) method of dealing with ties is used) for the
items in the left panels and (ii) Fay and Lumbard (2021) one-sided tests for the right panels.
The latter is a test on the sign of differences in paired responses; with binary responses, the
two-sided version of the test is equivalent to McNemar’s test.

Figure 6: Kendall’s 𝜏𝑏 correlation coefficients between RBS survey responses
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Notes: red (resp. blue) denotes a positive (resp. negative) correlation. Crossed-out coefficients
are not significant at the 5% level based on a two-sided test under the asymptotic 𝑡 approximation
(with a continuity correction).
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𝑏 not too low, participants with high Blame Index choose numbers that are on average
larger by 15 compared to the numbers chosen by participants with low Blame Index.

Similarly, Figure 7(b) and Table 5 show that—for intermediate values of the cost 𝑐

of stag—subjects with high Blame Index play stag more frequently than subjects with
low Blame Index.35 For such values of 𝑐, the frequency with which participants with high
Blame Index play stag is higher by 20 percentage points than the corresponding frequency
for participants with low Blame Index. For extreme values of 𝑐, behavior is concentrated
at the extremes for both groups.

We conclude that hypotheses 2 and 3 are supported by the data. Answers in survey
items about anticipated emotional reactions have predictive power over the choices
of subjects in incentivized play, consistent with strategic regret predictions. Namely,
participants that tend to blame more (and regret less) choose higher numbers in the
traveler’s dilemma and are more likely to play stag. This result becomes even more striking
if one notices that the games used in the survey are very different from the traveler’s
dilemma and the stag hunt game.

Figure 7: Behavior of high versus low Blame Index subjects in the traveler’s dilemma and stag
hunt game
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Notes: the lines represent the mean action for each group of participants with standard error
intervals. The group “high” (resp. “low”) is the subset of participants whose Blame Index is
above (resp. below) the median.

5.2.3 Hypothesis 4: the relationship between behavior in the traveler’s
dilemma and behavior in the stag hunt game

To test hypothesis 4, I estimate a logistic regression of the stag hunt action on a constant
and the number chosen in the traveler’s dilemma for each combination of stag cost

35Boschloo’s (exact) test, which is used in Table 5, is uniformly more powerful than Fisher’s exact test
and applies to cases where the sample size of each group is fixed (i.e., not random)—as are the sample
sizes of the high and low Blame Index groups in our case (due to the 50%/50% split). Fisher’s exact test
would apply if also the number of people who play stag and (the number of people who play) hare were
fixed. For completeness, Fisher’s exact test 𝑝-values are reported in Appendix B.4.
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Table 4: Behavior of high versus low Blame Index subjects in the traveler’s dilemma: Wilcoxon-
Mann-Whitney one-sided tests

Bonus/penalty (𝑏) 5 10 15 20 30 40 50 60
𝑝-value 0.106 0.067 0.134 0.08 0.023 0.018 0.04 0.036
Notes: the normal approximation with a continuity correction is used.

Table 5: Behavior of high versus low Blame Index subjects in the stag hunt game: Boschloo’s
one-sided tests

Stag cost (𝑐) 10 20 30 40 50 60 70 80
𝑝-value 0.192 0.309 0.138 0.038 0.035 0.138 0.136 0.544

𝑐 and bonus/penalty 𝑏 for a total of 8 × 8 = 64 regressions.36 That is, I estimate
𝑃𝑟𝑜𝑏(𝑠𝑡𝑎𝑔|𝑐) = 1/[1 + 𝑒−(𝛾𝑐,𝑏+𝛿𝑐,𝑏TDnum𝑏)], where 𝑃𝑟𝑜𝑏(𝑠𝑡𝑎𝑔|𝑐) is the probability that stag
is chosen when the stag cost is 𝑐 and TDnum𝑏 is the number chosen in the traveler’s dilemma
when the bonus/penalty is 𝑏. This gives estimates ̂︀𝛾𝑐,𝑏 and ̂︀𝛿𝑐,𝑏 for each combination of 𝑐

and 𝑏.
In 56 out of the 64 regressions ̂︀𝛿𝑐,𝑏 is positive. In 33 (resp. 27) it is positive and

significant at the 10% (resp. 5%) level. At the same time, in no regression is ̂︀𝛿𝑐,𝑏 negative
and significant at the 10% level. Particularly, Table 6 shows that the coefficients are
negative and/or insignificant mostly for 𝑐 and/or 𝑏 low, which is due to the fact that
for such parameter values, behavior is concentrated at the extremes of the action space.
For 𝑏 and 𝑐 not too low, Table 6(b) shows that an increase in the number chosen in the
traveler’s dilemma by 10 implies on average a 10-20% increase in the odds of stag. We
thus conclude that subjects who choose higher numbers in the traveler’s dilemma are
more likely to choose stag, consistent with the predictions of strategic regret.

5.3 Discussion of experimental results

The combination of survey responses with incentivized play has a number of advantages.
First, it allows us to detect the mechanism that produces incentivized behavior. For

example, the observed relationship between a participant’s behavior in the traveler’s
dilemma and her choices in the stag hunt game could also be due to other-regarding
preferences or preferences for efficiency.37 If we let modified payoffs be given by 𝑚𝑖(𝑠) =

36Table 13 in Appendix B presents a test of the hypothesis using non-parametric methods. The results
are robust.

37The quantal response equilibrium (QRE), introduced by McKelvey and Palfrey (1995), has also been
successful in fitting observed behavior in multiple games. For instance, Capra et al. (1999) show this to be
the case for the traveler’s dilemma. While strategic regret and QRE are not mutually exclusive approaches
(i.e., one could study QRE by adding errors to modified payoffs that account for regret and blame), I
briefly discuss some differences between them. First, the ability of QRE to remarkably fit experimental
data is partly due to its great flexibility. As Haile et al. (2008) show, QRE can perfectly fit any observed
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Table 6: Logistic regressions of the stag hunt action (stag = 1) on the number chosen in the
traveler’s dilemma

(a) 𝑝-values for ̂︀𝛿𝑐,𝑏

Stag cost (𝑐)
10 20 30 40 50 60 70 80

5 0.37 0.71 0.42 0.91 0.07 0.96 0.75 0.49
10 0.76 0.1 0.18 0.33 0 0.26 0.45 0.16

Bonus/ 15 NA 0.98 0.06 0.14 0 0.03 0.19 0.07
penalty 20 0.72 0.52 0.05 0.18 0 0.06 0.14 0.08

(𝑏) 30 0.99 0.39 0.02 0.02 0 0.01 0.01 0.01
40 0.72 0.41 0.02 0 0 0 0 0
50 0.58 0.47 0.03 0.01 0 0 0 0
60 0.62 0.98 0.28 0.01 0 0.01 0 0

(b) Odds ratios for an increase in TDnum𝑏 by 10

Stag cost (𝑐)
10 20 30 40 50 60 70 80

5 1.14 1.03 1.05 1.01 1.12 1 0.98 1.05
10 1.06 1.16 1.09 1.06 1.3 1.08 1.06 1.13

Bonus/ 15 NA 1 1.1 1.08 1.23 1.15 1.09 1.15
penalty 20 0.94 1.05 1.1 1.06 1.23 1.11 1.09 1.13

(𝑏) 30 1 1.07 1.12 1.11 1.24 1.16 1.16 1.21
40 0.95 1.07 1.14 1.16 1.25 1.2 1.19 1.21
50 0.92 1.06 1.13 1.14 1.22 1.16 1.16 1.2
60 0.93 1 1.05 1.12 1.2 1.13 1.15 1.18

Notes: the sample size in each regression is 100 participants. The regression for 𝑐 = 10 and
𝑏 = 15 is not valid because out of 100 participants, only two did not choose stag (for 𝑐 = 10)
and both of them chose 200 in the traveler’s dilemma (for 𝑏 = 15).

𝑢𝑖(𝑠) + 𝛾𝑖𝑢𝑗(𝑠) for some 𝛾𝑖 ≥ 0, then with 𝑖’s beliefs fixed, a higher 𝛾𝑖 will increase the
attractiveness of stag and at the same time induce 𝑖 to choose a higher number in the
traveler’s dilemma. However, the survey responses suggest that the mitigating effect of
blame on regret is (at least partly) the mechanism behind this relationship. Also, section
5.4 presents additional (existing) experimental results on the stag hunt game, which can
be explained by strategic regret but not by other-regarding preferences.

Second, the fact that survey responses indeed predict incentivized behavior as suggested

behavior in a single normal-form game, unless significant a priori restrictions are imposed. This is not
the case with strategic regret, which, as we have seen, delivers (qualitatively) unique predictions on the
deviations from behavior derived under standard assumptions. Also, as will be seen in section 6, strategic
regret predictions coincide with standard predictions for games with extreme conflict of interest. Second,
strategic regret provides a concrete mechanism behind observed behavior. This mechanism has shown to
be particularly helpful in explaining heterogeneity in behavior across subjects, as well as within-subject
correlation in behavior across different games.

22



by the theory increases confidence in the survey results themselves. Third, while survey
responses alone support the strategic regret assumption, the connection between survey
responses and incentivized play (in games very different from those used in the survey)
lends direct support to the predictions of strategic regret.

5.4 An alternative test based on existing experimental evidence

Our analysis suggests that the way people experience regret in games differs from how
they experience it in single-agent settings. An alternative test of strategic regret will check
exactly that: whether participant behavior differs between a game and a comparable
individual decision-making problem, as predicted by strategic regret.38

Consider the following “single-agent” (i.e., non-strategic) version of the stag hunt game
presented in Figure 2 of section 4.2.2. Player 1 chooses between stag and hare as in the
standard game. However, player 2 is passive; instead of choosing an action himself, nature
chooses his action for him (and this is common knowledge). Namely, the computer chooses
hare or stag with some exogenous probability. Denote by BASSTR

1 the size of the basin
of attraction of stag for player 1 in the stag hunt game as calculated in Claim 3, and by
BASSA

1 its corresponding value in the single-agent version (i.e., its value for 𝛽1 = 0, since
player 1 cannot blame nature).39 The following is an immediate corollary of Claim 3.

Claim 4. Let Λ ≤ 1. Then, BASSTR
1 is higher than (resp. equal to) BASSA

1 if 𝛼1𝛽1 > 0
(resp. if 𝛼1𝛽1 = 0).

Claim 4 shows that under strategic regret—but not under single-agent regret or
standard assumptions on preferences, people should be more willing to play stag in the
stag hunt game than in its single-agent version. Particularly, BASSTR

𝑖 > BASSA
𝑖 . Indeed,

Bolton et al. (2016) experimentally elicit the size of the basin of attraction of stag in
both versions of a stag hunt game with a safe option (i.e., Λ = 1; also, 𝜆 = 3/2 in
their experiment) to find that B̂AS

STR
= 0.36, while B̂AS

SA
= 0.25 on average (across

subjects).40 That is, the maximum probability with which the other player (resp. the
computer) can play hare with the participant still willing to play stag is 0.36 (resp. 0.25)
on average in the standard game (resp. single-agent version). Overall, strategic regret
explains the finding that stag is more robust to strategic uncertainty than to uncertainty
stemming from “nature.”41

38I thank Séverine Toussaert for suggesting this test of strategic regret.
39STR (resp. SA) stands for “strategic” (resp. “single-agent”).
40The difference in the distributions of BASSTR

𝑖 and BASSTR
𝑖 is statistically significant. The magnitude

of the difference can easily be explained by strategic regret. For example, 𝛼1 = 1 and 𝛽1 = 1/2 give
BASSTR

1 = 8/15. Also, BASSA
1 = 2/5, so BASSTR

1 − BASSA
1 = 2/15 ≈ 0.13. Remember that these

numbers are derived with baseline payoffs linear in monetary payoffs. Risk aversion can explain the lower
estimates of Bolton et al. (2016) in both versions of the game.

41Yet, strategic regret cannot explain the opposite pattern (termed “betrayal aversion”) documented
in the trust game (e.g., see Bohnet and Zeckhauser, 2004; Bohnet et al., 2008), where participants are
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To the best of my knowledge, no other model (or concrete mechanism) has been
proposed that explains this finding. Bolton et al. (2016) note that the finding is consistent
with the social cognition literature (e.g., Schul et al., 2004), which suggests that games
with aligned interests “activate a trust mindset.” Although strategic regret is about blame
and division of responsibility rather than trust, it does offer a deeper explanation for
the activation of a trust mindset in games with aligned interests. Indeed, the (at least
partial) alignment of interests plays an important role in strategic regret, because only
under such alignment can there exist (blameworthy, and thus, regret-mitigating) mutually
beneficial best-responses. Conversely, as noted in section 6, in games with extreme conflict
of interest, strategic regret has no bite.

6 Discussion, robustness, and extensions

Section A in the appendix presents additional results, some of which I briefly discuss here.

Robustness of theoretical results. The theoretical results are robust in a number of
ways. First, Proposition 1 generalizes to 𝑛-player games under weaker, non-parametric
assumptions on regret. Second, (under our canonical specification of regret) all theoretical
predictions are invariant to affine transformations of baseline payoffs. Third, under
weaker assumptions on regret, single-agent regret has little to no impact on rationalizable
outcomes when compared to baseline preferences.42 On the other hand, strategic regret
can alter the set of rationalizable outcomes, as it does in the traveler’s dilemma presented
in section 4.

Regret, blame, and the alignment of players’ interests. Yet, in weakly unilaterally
competitive games—a generalization of (two-person) strictly competitive (e.g., zero-sum)
games—strategic regret has no bite.43 In this class of games, a change in a player’s
action that increases her own (baseline) payoff harms every other player. Thus, there
is no outcome where a player can blame another for not playing a Pareto-improving
best-response, since such best-response never exists. This implies that modified payoffs are
independent of 𝛽𝑖’s, so the tendency to blame plays no role in games with severe conflict
of interest. Particularly, best-response functions under strategic regret are the same as

less willing to trust when they play against a human compared to when they play against the computer.
In that game, in the second player’s decision node, there is complete conflict of interest. Thus, the first
player can never blame the second for not playing a Pareto-improving best-response (since such a response
never exists).

42Remember that under our canonical specification of regret, single-agent regret has no impact on
rationalizable outcomes.

43Weakly unilaterally competitive games were introduced by Kats and Thisse (1992). For our purposes,
and slightly more broadly defined than in Kats and Thisse (1992), a (normal-form, 𝑛-person) game is
weakly unilaterally competitive if any unilateral change of action by a player 𝑖 that results in a (weak)
increase in 𝑖’s baseline payoff causes a (weak) decline in the baseline payoff of every other player.
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under standard assumptions on preferences. Therefore, for example, in the unique RE of
a (one-shot) prisoner’s dilemma both players defect, and in the unique RE of a public
goods game no player contributes. These predictions are consistent with the evidence of
low rates of cooperation in the prisoner’s dilemma and low contribution rates in public
goods games among experienced players (e.g., see Ledyard, 1995; Andreoni and Croson,
2008; Dal Bó and Fréchette, 2018).

This theoretical result on games with extreme conflict of interest is particularly
insightful when viewed against the analysis of section 4. In the games studied there, there
is (partial) alignment of interests and strategic regret does make a difference. In the
traveler’s dilemma (section 4.2.1), if we fix player 𝑖’s number, then both 𝑖 and 𝑗 prefer (in
baseline payoff terms) that 𝑗 undercut 𝑖 by exactly one rather than by more than one.
Similarly, in the stag hunt game (section 4.2.2), given that player 𝑖 plays stag, both 𝑖 and
𝑗 prefer that 𝑗 also play stag.

7 Conclusion

In this paper, I have argued that despite its significant role in decision-making, our
understanding of regret in strategic interactions is limited. Research on (anticipated)
regret in games has so far followed the single-agent regret approach, modeling regret as
if in a single-agent context with the other players’ actions treated as the state of the
world. I argue for the strategic regret approach, which accounts for how the division of
responsibility in games mediates regret and, in turn, shapes behavior. Namely, I postulate
that blame assigned to another player for not playing (when available) a Pareto-improving
best-response mitigates one’s own regret.

I find that strategic regret gives rise to theoretical predictions that are closer to
existing experimental results (compared to predictions under standard assumptions on
preferences or under single-agent regret). Also, strategic regret can lead to a higher degree
of cooperation to Pareto superior outcomes in games with (at least partially) aligned
interests, including not only coordination but also dominance-solvable (under standard
assumptions on preferences) games. However, consistent with existing experimental results,
it makes no difference in games with extreme conflict of interest.

Experimental evidence lends direct support to both the assumptions and predictions
of strategic regret. Namely, strategic regret can explain Bolton et al.’s (2016) finding
that people take more risks in a stag hunt game when they play against another person
rather than when a computer chooses the other player’s action. I also provide new
experimental evidence in favor of strategic regret. Survey questions that elicit participants’
feelings in certain scenarios show that the subjects’ regret is indeed mitigated by blame
assigned to others for not playing (when available) a Pareto-improving best-response.
Notably, participants’ anticipated regret and blame elicited in vastly different games have
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predictive power—consistent with strategic regret predictions—over their choices in the
traveler’s dilemma and the stag hunt game. Namely, participants who (according to
survey responses) tend to more strongly blame the other player (and regret less) choose
higher numbers in the traveler’s dilemma and are more likely to play stag in the stag hunt
game. This implies that although often negatively valenced, blame and the division of
responsibility can actually induce people to take socially desirable actions by mitigating
those actions’ potential to generate regret.

We conclude that, when modified to account for blame and the division of responsibility
in games, regret offers novel insights into strategic behavior. More generally, the results
emphasize that models of individual decision-making may benefit from modifications when
applied in games. (Implicit) assumptions that are plausible (or even hardly qualify as
assumptions) in single-agent settings (e.g., that the agent does not blame the random
state of the world) should be reconsidered in strategic environments.
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Appendix

A Robustness, extensions, and additional results

A.1 Additional results

This section presents extensions of the model, as well as the results on the Kreps game
and the volunteer’s dilemma.

A.1.1 The Kreps game

Theoretical predictions. Goeree and Holt (2001) study the game presented in Figure
8(a) for 𝛿 = 330, a game similar to the one presented in Kreps (1989). The game possesses
three NE: two pure, (T,L) and (B,R), and one where both players randomize; the column
one between L and M. However, both in Kreps’ (1989) informal experiments and in Goeree
and Holt’s (2001) incentivized lab experiments, the majority of column players choose
N, an action that is not part of any NE, while M is played with very low probability.44

Claim 5 studies the equilibria of that game under our canonical specification of regret
given in (2).

Figure 8: The Kreps game

(a) Baseline/monetary payoffs

𝐿 𝑀 𝑁 𝑅
𝑇 500,350 300,345 310,𝛿 320,50
𝐵 300,50 310,200 330,𝛿 350,340

(b) Modified payoffs

L M N R

𝑇 500,350 300,345 − 5𝛼2 310,𝛿 − (350 − 𝛿)𝛼2 320, 50 − 10𝛼2·
(30 − 29𝛽2)

𝐵
300 − 10𝛼1·
(20 − 5𝛽1) ,50 − 10𝛼2·

(29 − 30𝛽2) 310,200 − 140𝛼2 330,𝛿 − (340 − 𝛿)𝛼2 350,340

Notes: the modified payoffs are given for 𝛽2 ≤ 29/30 and 𝛽1 ≥ 1/6, so that expressions are not
too long.

Claim 5. Consider the Kreps game with 𝛿 ∈ [200, 330], 𝛽2 ≤ 29/30, and 𝛼2 ≤ 1.

(i) There exist two PNE: (𝑇,𝐿) and (𝐵,𝑅).
44While N can be seen as a safe action, risk aversion of the column player cannot explain this finding.

This is because L needs to be played with positive probability for the row player to be willing to mix.
But for L to be a best-response, T needs to be played with extremely high probability for otherwise M is
superior. But if T is played with extremely high probability, risk aversion (of the column player) plays a
negligible role.
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(ii) If 𝛽2 = 0, there exists a unique mixed RE; in this RE both players mix, the column
one between L and M.

(iii) There exists 𝛿* such that for 𝛽2 > 0, if 𝛿 > (resp. <) 𝛿*, then there exists a unique
mixed RE; in this RE both players mix, the column one between L and N (resp. L
and M), where 𝛿* is decreasing in 𝛽2.

When 𝛿 > 𝛿* in the mixed RE, N is played with high probability, as seen in existing
experimental results.45 For example, for 𝛼2 = 1 and 𝛽2 = 9/10, 𝛿* = 308.75 and 𝜎2(𝑁) =
71/75. Thus, strategic—unlike single-agent—regret can explain the high frequency with
which N is played in experiments and the low one with which M is played. At the same
time, strategic regret offers an intuitive comparative statics prediction. For 𝛿 high enough
the safe option N is played in equilibrium (and M is not), while for 𝛿 low, the risky action
M is played in the mixed equilibrium. Particularly, the threshold level 𝛿* that 𝛿 needs to
surpass for N to be played in equilibrium is decreasing in 𝛽2.46

Experimental results. Claim 5 gives rise to hypothesis 5, which is indeed supported
by the data.

Hypothesis 5. The frequency with which 𝑁 (resp. 𝑀) is played in the Kreps game
increases (resp. decreases) with 𝛿 (see Section A.1.1).

Table 7 shows the distribution of outcomes in the Kreps game for various values of the
parameter 𝛿. As predicted under strategic regret, the frequency with which 𝑁 is played
is increasing in 𝛿. Namely, for 𝛿 high enough, play is concentrated on actions 𝐿 and 𝑁

with 𝑁 played with high probability. For 𝛿 low, play is concentrated on 𝐿 and 𝑀 . These
results are consistent with mixed strategic RE predictions, but not with predictions under
single-agent regret or standard assumptions on preferences (see section A.1.1).

A.1.2 A simple extension to 𝑛-person games

In the results on 𝑛-person games discussed above we did not need to refer to a person’s
blame payoff. This section presents a simple extension of the model to 𝑛-person games
using the following definition of the blame payoff. Given an action profile 𝑠, each player 𝑖

identifies the player 𝑗 who by individually best-responding to 𝑠−𝑗 could have increased
player 𝑖’s baseline payoff the most. Then, player 𝑖 assigns blame to that player as in
two-player games.

45𝛿* ≡ 50 + 300[30(1 + 𝛼2) − 59𝛼2𝛽2]/[31(1 + 𝛼2) − 60𝛼2𝛽2] and the probability is given by 𝜎2(𝑁) =
[20 + 𝛼1(20 − 5𝛽1)]/[22 + 𝛼1(20 − 5𝛽1 + max{2 − 19𝛽1, 0})].

46Here is why this happens. Starting from 𝛽2 = 0 (in which case M is played in the mixed RE), an
increase in 𝛽2 causes the payoff of the column player at (B,L) to increase. This increases the probability
with which B has to be played to make the column player indifferent between L and M. But as the
probability of 𝐵 increases, 𝑁 becomes more attractive compared to M. When 𝛿 passes the threshold 𝛿*,
𝑁 is played instead of 𝑀 in the mixed RE.
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Table 7: Distribution of outcomes in the Kreps game

(a) 𝛿 = 250

𝐿 𝑀 𝑁 𝑅

𝑇 34.7% 36.6% 7.9% 3%
𝐵 9.9% 6.9% 1% 0%

(b) 𝛿 = 270

𝐿 𝑀 𝑁 𝑅

𝑇 24.8% 26.7% 25.7% 4%
𝐵 5% 7.9% 5% 1%

(c) 𝛿 = 290

𝐿 𝑀 𝑁 𝑅

𝑇 18.8% 18.8% 41.6% 3%
𝐵 4% 1% 10.9% 2%

(d) 𝛿 = 310

𝐿 𝑀 𝑁 𝑅

𝑇 9.9% 5% 51.5% 3%
𝐵 5.9% 3% 20.8% 1%

(e) 𝛿 = 330

𝐿 𝑀 𝑁 𝑅

𝑇 8.9% 0% 53.5% 3%
𝐵 4% 2% 28.7% 0%

Definition 4. The blame payoff for player 𝑖 is 𝑢𝑏
𝑖(𝑠𝑖,𝑠−𝑖) := max{𝑢𝑏𝑎

𝑖 (𝑠𝑖,𝑠−𝑖), 𝑢𝑖(𝑠𝑖,𝑠−𝑖)},
where 𝑢𝑏𝑎

𝑖 (𝑠𝑖,𝑠−𝑖) := max𝑗∈𝑁∖{𝑖}{max𝑠′
𝑗∈𝑃 𝐵𝑅𝑗(𝑠−𝑗) 𝑢𝑖(𝑠′

𝑗,𝑠−𝑗)} is the payoff 𝑖 would receive
if a player “most to blame” had by best-responding increased 𝑖’s baseline payoff.

A player is “most to blame” if by best-responding, she could have increased player 𝑖’s
baseline payoff the most (compared to any other player individually best-responding).47

Modified payoffs are then given by (1) and (2). Notice that a player is assumed to
blame another for not playing a mutually beneficial best-response, which—when there
are more than two players—may not be Pareto-improving (i.e., a third player could
be harmed by that best-response). If this seems unrealistic, an alternative formulation
could have a player assign blame to another only for not playing a Pareto-improving
best-response. However, in the volunteer’s dilemma, any mutually beneficial (for two
players) best-response is also Pareto-improving. In any case, a careful analysis of regret
and blame in 𝑛-player games is left for future work.

A.1.3 Regret and blame in games with extreme conflict of interest

As we have seen, strategic regret can affect the set of mixed equilibria of some games.
Yet, Proposition 3 shows that in weakly unilaterally competitive (normal-form) games,
strategic regret has no bite.48

Definition 5. A game 𝐺 is weakly unilaterally competitive (WUC) if for every player
47Notice that there can be multiple players “most to blame.”
48The definition provided here differs slightly from the one in Kats and Thisse (1992). As defined

here, the class of weakly unilaterally competitive games is a superset of the class of weakly unilaterally
competitive as originally defined by Kats and Thisse (1992).
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𝑖 ∈ 𝑁 , every 𝑠𝑖,𝑠
′
𝑖 ∈ 𝑆𝑖, and every 𝑠−𝑖 ∈ 𝑆−𝑖, if 𝑢𝑖(𝑠′

𝑖,𝑠−𝑖) ≥ 𝑢𝑖(𝑠𝑖,𝑠−𝑖), then 𝑢𝑗(𝑠′
𝑖,𝑠−𝑖) ≤

𝑢𝑗(𝑠𝑖,𝑠−𝑖) for every player 𝑗 ̸= 𝑖.

A game is WUC if any unilateral change of action by a player 𝑖 that results in a
(weak) increase in 𝑖’s (baseline) payoff causes a (weak) decline in the payoffs of all other
players. Thus, there is no outcome where a player can blame another for not playing
a mutually beneficial best-response (since such best-response never exists). Therefore,
every player 𝑖’s modified payoff function is independent of 𝛽𝑖. Particularly, modified
payoffs under strategic regret coincide with those under single-agent regret, and thus, so
do best-response correspondences and all theoretical predictions.49

Proposition 3. Consider any weakly unilaterally competitive game 𝐺. For any player
𝑖 ∈ 𝑁 and any action profile 𝑠 ∈ 𝑆, 𝑢𝑏

𝑖(𝑠) = 𝑢𝑖(𝑠), so 𝑚𝑖(𝑠) is constant in 𝛽𝑖.

Notice that any (two-player) strictly competitive game is WUC.50 Also, any zero-sum
game is strictly competitive.51

A.1.4 The volunteer’s dilemma

Theoretical predictions. We now use the extension of section A.1.2 to derive theoretical
predictions for the 𝑛-player volunteer’s dilemma, as described in Diekmann (1985). There
are 𝑛 players simultaneously choosing whether to volunteer. If none of the players
volunteers, then each receives baseline payoff normalized to 0. If at least one player
volunteers, then (i) any volunteering player receives baseline payoff 𝜑1 > 0 and (ii) any
non-volunteering player receives baseline payoff 𝜑2 > 𝜑1, as she does not incur the cost
𝑐 := 𝜑2 − 𝜑1 of volunteering.

Claim 6 characterizes a player’s best-response correspondence.52

Claim 6. Consider the volunteer’s dilemma with regret given by (2) and let 𝜉𝑖 be the
probability with which player 𝑖 expects at least one other player to volunteer. Then,
there exists 𝜉𝑖 such that volunteering is optimal for 𝑖 if and only if 𝜉𝑖 ≤ 𝜉𝑖, where 𝜉𝑖 is (a)
decreasing in 𝛽𝑖 for 𝛽𝑖 ∈ [0, 𝜑1/𝜑2] and constant in 𝛽𝑖 for 𝛽𝑖 ∈ [𝜑1/𝜑2,1] provided 𝛼𝑖 > 0,
and (b) decreasing in 𝛼𝑖 provided 𝛽𝑖 > 0.53

49The result will still hold if we appropriately relax assumption 2.
50This is true when a two-player game is said to be strictly competitive if for any pair of pure action

profiles 𝑠,𝑠′ ∈ 𝑆, sgn{𝑢1(𝑠) − 𝑢1(𝑠′)} = sgn{𝑢2(𝑠′) − 𝑢2(𝑠)}. This also means that 𝑢1(𝑠) = 𝑢1(𝑠′) if and
only if 𝑢2(𝑠) = 𝑢2(𝑠′). Strictly competitive games are usually defined as above but for pairs of (possibly)
mixed action profiles 𝜎, 𝜎′ ∈ Δ. However, this is not necessary for our purposes.

51Adler et al. (2009) also show that any strictly competitive game (defined more narrowly, in terms of
pairs of mixed action profiles) is an affine payoff transformation of a zero-sum game.

52In the experiment of section 5, participants play one-shot games, which makes non-equilibrium
predictions most relevant. For completeness, section A.1.4 in the appendix discusses equilibrium outcomes.
See Goeree et al. (2017) for volunteer’s dilemma experiments with multiple rounds, where subjects gain
experience by observing the outcome of each round before proceeding to the next one.

53𝜉𝑖 ≡ [1 + (1 + 𝛼𝑖)(𝜑2 − 𝜑1)/(𝜑1 + 𝛼𝑖 max {𝜑1 − 𝛽𝑖𝜑2,0})]−1 ∈ (0,1). If 𝛼𝑖𝛽𝑖 = 0, then 𝜉𝑖 = 𝜑1/𝜑2.
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Similar to BAS𝑖 in the stag hunt game, 𝜉𝑖 can be interpreted as a measure of the
robustness of volunteering to strategic uncertainty. Claim 6 shows that the more a player
𝑖 tends to blame (i.e., 𝛽𝑖 high), the less willing she is to volunteer.54 This is because the
only outcome where there is scope for blame is when no player has volunteered. In this
case, a player’s regret for not volunteering herself is mitigated through blame put on the
other player for not volunteering either.

Experimental results. We will now use the volunteer’s dilemma to show that there
are limits to blame.55 Claim 6 gives rise to hypothesis 6.

Hypothesis 6. Participants with higher Blame Index are less likely to volunteer in the
volunteer’s dilemma.

Hypothesis 6 is not supported. Figure 9 shows no predictive power of Blame Index
over choices in neither the two- nor the four-player volunteer’s dilemma.

Figure 9: Behavior of high versus low Blame Index subjects in the four-player volunteer’s
dilemma

(a) Two-player volunteer’s dilemma
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(b) Four-player volunteer’s dilemma
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Notes: the lines represent the percentage of subjects that volunteered in each group of participants
with standard error intervals. The group “high” (resp. “low”) is the subset of participants whose
Blame Index is above (resp. below) the median.

A natural explanation is the following. The only case where a player 𝑖 may blame
another player 𝑗 is (in theory) when nobody has volunteered. But in that case, what
𝑗 could have done differently is exactly what 𝑖 herself could have done. It makes sense
that people do not blame others for not volunteering when they themselves have not
volunteered. Put differently, when nobody volunteers, each player equal responsibility for

54Also, the attractiveness of volunteering to player 𝑖 decreases with regret intensity 𝛼𝑖. While both
volunteering and not volunteering can generate regret (when at least one more player volunteers or no
player volunteers, respectively), the former type of regret dominates, which makes 𝜉𝑖 decreasing in 𝛼𝑖 (if
𝛽𝑖 > 0). This means that a higher weight 𝛼𝑖 on regret tends to induce player 𝑖 not to volunteer, but only
as long as player 𝑖 has some tendency to blame others. Otherwise, 𝛼𝑖 does not play a role.

55Participants played the volunteer’s dilemma in groups of two or four with 𝑐 being the cost of
volunteering. The payoff if nobody volunteers was 40. The gross payoff if at least on player volunteers
was 200.
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the bad outcome, and thus, does not blame the others. This intuition is consistent with
Çelen et al.’s (2017) finding that in public good games, a player 𝑖 tends to blame (i.e.,
punish) another player 𝑗 when 𝑗’s contribution is lower than 𝑖’s.

This explanation is also supported by the evidence from the other two games, where
blame does have predictive power over incentivized play. In the traveler’s dilemma, the
cases where player 𝑖 blames player 𝑗 is when the former has chosen a number that is
higher (by at least 2) compared to the number chosen by 𝑗. In that case, given 𝑖’s action,
𝑗 could have acted differently (i.e., best-responded by undercutting 𝑖 by exactly 1, causing
a Pareto improvement) in a way that 𝑖 could not have, given 𝑗’s action.

The stag hung game with a safe option offers even stronger evidence in favor of this
explanation, thanks to its similarity to a two-player volunteer’s dilemma. Notice that this
stag hung game is equivalent to a two-player volunteer’s dilemma with only the following
difference: two volunteers (i.e., players who choose stag)—instead of one—are needed for
the benefits of volunteering (i.e., playing stag) to materialize. Then, the only case where
player 𝑖 blames player 𝑗 is when the former has played stag while the latter has played
hare. In that case, given 𝑖’s action, 𝑗 could have acted differently (i.e., best-responded by
playing stag, causing a Pareto improvement) in a way that 𝑖 could not have, given 𝑗’s
action.

A.1.5 The limits of blame: a simple generalization of strategic regret

I now present a generalization of strategic regret to reconcile the theory with the evidence
on the volunteer’s dilemma. Under this generalization, the blame player 𝑖 assigns to player
𝑗 (for not playing a Pareto-improving best-response) can be mitigated when 𝑖 herself
could have played a Pareto-improving best-response. For simplicity, restrict attention to
two-player games and normalize all baseline payoffs to be positive. The blame payoff for
player 𝑖 is given by

𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗) := 𝑢𝑖(𝑠)

(︃
1 + max

{︃
𝑢𝑏𝑎

𝑖 (𝑠𝑖)
𝑢𝑖(𝑠) − max

{︃
𝛾𝑖

𝑢𝑏𝑎
𝑗 (𝑠𝑗)
𝑢𝑗(𝑠) , 1

}︃
, 0
}︃)︃

,

where for each player 𝑖, 𝑢𝑏𝑎
𝑖 (𝑠𝑖) ≡ max𝑠′

𝑗∈𝑃 𝐵𝑅𝑗(𝑠𝑖) 𝑢𝑖(𝑠𝑖,𝑠
′
𝑗) and 𝛾𝑖 ∈ [0,1] measures how

strongly blame (assigned by 𝑖 to 𝑗) is mitigated when 𝑖 herself could have played a
Pareto-improving best-response.56 For 𝛾𝑖 = 0, this reduces to our standard definition of
the blame payoff.

Let 𝛾𝑖 = 1, assume that action profile 𝑠 is played and that by best-responding 𝑗 could
have increased 𝑖’s baseline payoff by percentage 𝑥. This tends to make 𝑖 blame 𝑗. However,
if by best-responding 𝑖 could also have increased 𝑗’s baseline payoff by percentage 𝑥 or

56Notice that because ratios of baseline payoffs are used in the definition of the blame payoff, linear
transformations of 𝑗’s baseline payoffs will not affect 𝑖’s blame payoff. However, affine transformations
will.
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higher, then 𝑖 does not blame 𝑗. This means that for 𝛾𝑖 = 1, 𝑖 never blames player 𝑗 in
the volunteer’s dilemma, so 𝑖’s best-response does not depend on 𝛼𝑖 or 𝛽𝑖.

At the same time, theoretical predictions for the traveler’s dilemma and the stag
hunt game with Λ ≤ 1 remain the same under any parametrization of the generalized
model. That is because in these games, in all cases where 𝑖 can blame 𝑗 for not playing
a Pareto-improving best-response, 𝑖 does not have a Pareto-improving best-response.
Namely, for any action profile 𝑠 such that 𝑢𝑏𝑎

𝑖 (𝑠𝑖) > 𝑢𝑖(𝑠) it holds that 𝑢𝑏𝑎
𝑗 (𝑠𝑗) ≤ 𝑢𝑗(𝑠).

Therefore, blame assigned by 𝑖 to 𝑗 is never mitigated regardless of the value of 𝛾𝑖 ∈ [0,1],
so the theoretical predictions of section 4 still go through.57

A.1.6 Equilibrium predictions in the volunteer’s dilemma

For completeness, we now derive equilibrium predictions for the 𝑛-player volunteer’s
dilemma. The set of PNE (and thus, PRE) consists of 𝑛 asymmetric equilibria; in each of
these equilibria exactly one player volunteers.

Claim 6’. Consider the volunteer’s dilemma with regret given by (2) and let 𝜉𝑖 be the
probability with which player 𝑖 expects at least one other player to volunteer.

(i) 𝑝 ≡ (𝑝1,𝑝2, . . . ,𝑝𝑛) is a mixed equilibrium, where 𝑝𝑖 the probability with which player
𝑖 volunteers, if and only if max𝑖∈𝑁 𝜉𝑖 ≤ 1 − Δ1/(𝜈−1)

𝑝 and 𝑝𝑖 = 1 − Δ1/(𝜈−1)
𝑝 /(1 − 𝜉𝑖)

for every player 𝑖 ∈ 𝑉𝑝, where 𝑉𝑝 := {𝑖 ∈ 𝑁 : 𝑝𝑖 > 0} the set (resp. 𝜈 := |𝑉𝑝| the
number) of players volunteering with positive probability and Δ𝑝 := ∏︀

𝑗∈𝑉𝑝
(1 − 𝜉𝑗).

(ii) If 𝛼𝑖 = 𝛼, 𝛽𝑖 = 𝛽 (so that 𝜉𝑖 = 𝜉) for every 𝑖, then in the unique symmetric
RE, each player volunteers with probability 𝑝𝑅𝐸 = 1 − (1 − 𝜉)1/(𝑛−1) ≤ 𝑝𝑁𝐸 with
strong inequality if and only if 𝛼𝛽 > 0, where 𝑝𝑁𝐸 := 1 − (1 − 𝜑1/𝜑2)

1
𝑛−1 , the

corresponding probability in the symmetric NE. If 𝛼𝛽 > 0, 𝑝𝑅𝐸 is (i) decreasing in
𝛽 for 𝛽 ∈ [0, 𝜑1/𝜑2] and (ii) decreasing in 𝛼.

Part (iii) says that with homogeneous single-agent regret preferences, the unique
symmetric RE coincides with the NE one, while when there is scope for blame (𝛽 > 0)
volunteer rates are lower in RE than in NE.58 Higher tendency to blame the others (𝛽) or
higher intensity of regret considerations (𝛼) decreases the probability with which each
player volunteers.

57This modification of blame has no bite in the hypothetical scenario (described in the survey) for
game STR1, but it does play a role in the scenario for game STR2.

58This is partly consistent with Goeree et al.’s (2017) experimental finding that for 𝑛 small, observed
volunteer rates are indeed lower than predicted by the symmetric NE but for 𝑛 large, they are higher.
Nonetheless, it is not clear why the symmetric equilibrium should be the main prediction, as there also
is extensive multiplicity of mixed equilibria. For example, with homogeneous preferences (i.e., 𝛼𝑖 = 𝛼,
𝛽𝑖 = 𝛽 for every 𝑖, which includes the case of baseline payoffs), for any 𝑛′ ∈ {2,3, . . . , 𝑛} there exists
an equilibrium where each of 𝑛′ players mixes (so that the 𝑛′ players play a symmetric equilibrium
among themselves, as if there are no other players) and the remaining 𝑛 − 𝑛′ players best-respond by not
volunteering. Thus, there are 𝑛 − 1 mixed equilibria up to relabeling of the players.
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Part (ii) says that in mixed equilibria, among players that volunteer with positive
probability, those with higher 𝛼𝑖 and/or 𝛽𝑖 (and thus, higher 𝜉𝑖) volunteer with lower
probability. This effect is in the opposite direction than the one suggested by non-
equilibrium analysis—a common feature in mixed equilibria.59 As is true for pure equilibria
of this game, coordination to any specific mixed equilibrium seems difficult without
communication. Thus, as in the stag hunt game, 𝜉𝑖 can be best interpreted as a measure
of the robustness of volunteering to strategic uncertainty. Also, in the experiment of
section 5, participants play one-shot games, which makes non-equilibrium predictions
most relevant.

A.2 Results under weaker assumptions on regret

This section presents additional theoretical results under weaker assumptions on regret.
Assumption 1 is the weakest assumption to be used.

Assumption 1. For every player 𝑖, 𝑟𝑖(𝑢𝑖,𝑢
𝑏𝑟
𝑖 ,𝑢𝑏

𝑖) satisfies the following:

(i) No rejoicing: player 𝑖’s regret is non-negative, that is, 𝑟𝑖 (𝑥,𝑦,𝑧) ≥ 0 for every
(𝑥,𝑦,𝑧).

(ii) Regret, realized baseline payoff, and best-response payoff: player 𝑖’s regret
is non-increasing in the baseline payoff she would receive if she best-responded,
non-positive if she best-responds, and non-decreasing in the own realized baseline
payoff, that is, (a) 𝑟𝑖 (𝑥′,𝑦,𝑧) ≤ 𝑟𝑖 (𝑥,𝑦,𝑧) for every (𝑥′,𝑦,𝑧),(𝑥,𝑦,𝑧) such that 𝑥′ ≥
𝑥, (b) 𝑟𝑖 (𝑥,𝑥,𝑧) ≤ 0 for every (𝑥,𝑥,𝑧), and (c) 𝑟𝑖 (𝑥,𝑦′,𝑧) ≥ 𝑟𝑖 (𝑥,𝑦,𝑧) for every
(𝑥,𝑦′,𝑧),(𝑥,𝑦,𝑧) such that 𝑦′ ≥ 𝑦.

(iii) Regret and blame: player 𝑖’s regret is non-increasing in the blame payoff, that is,
𝑟𝑖 (𝑥,𝑦,𝑧′) ≤ 𝑟𝑖 (𝑥,𝑦,𝑧) for every (𝑥,𝑦,𝑧′),(𝑥,𝑦,𝑧) such that 𝑧′ ≥ 𝑧.

Assumptions 1(i) and 1(iib) together imply that blame put on the opponent cannot
more than compensate for the regret a non-best-response (i.e., 𝑥 < 𝑦) tends to generate.
To see this, notice that 𝑟𝑖 (𝑥,𝑦,𝑧′) ≥ 𝑟𝑖 (𝑥,𝑥,𝑧) = 0 always, which means that even if 𝑧′ ≫ 𝑧,
the most a high blame payoff 𝑧′ can do is reduce regret down to the level it would have if
𝑖 best-responded.

Assumption 1 leaves a lot of modeling freedom, since it describes the effects of realized,
best-response, and blame payoffs on regret all else constant. For example, it can allow
for 𝑟(1,20,2) < 𝑟(1,1,1), which seems unreasonable. However, we will see that in the
case of single-agent regret (i.e., when assumption 1(iii) holds with regret constant in
𝑢𝑏

𝑖), these assumptions are sufficient for showing the inability of single-agent regret to
59Among mixing players, those with higher tendency 𝜉𝑖 to volunteer need to actually volunteer with

lower probability in equilibrium to keep those with lower tendency to volunteer willing to do so.
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move theoretical predictions away from predictions derived under standard assumptions
on preferences. On the other hand, we will see that strategic-regret can give rise to
novel predictions under the stronger assumption 2, which significantly restricts modeling
freedom.

Assumption 2. There exists a function ̃︀𝑟𝑖 : R → R+ and 𝛽𝑖 ∈ [0,1] such that

(i) 𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
= ̃︀𝑟𝑖

(︁
𝑢𝑏𝑟

𝑖 −
(︁
𝛽𝑖𝑢

𝑏
𝑖 + (1 − 𝛽𝑖)𝑢𝑖

)︁)︁
for every (𝑥,𝑦,𝑥),

(ii) ̃︀𝑟𝑖 (𝑡) = 0 for 𝑡 ≤ 0, and

(iii) ̃︀𝑟𝑖(𝑡′) > ̃︀𝑟𝑖(𝑡) for every 𝑡,𝑡′ such that 𝑡′ > max{𝑡,0}.

Assumption 2 restricts modeling freedom requiring regret to be non-decreasing in the
difference between the best-response payoff and a weighted average of the realized and
the blame payoff. For instance, it requires that 𝑟(1,20,2) = ̃︀𝑟𝑖(19 − 𝛽𝑖) > ̃︀𝑟𝑖(0) = 𝑟(1,1,1).
The canonical specification of regret satisfies the general assumptions above.

Lemma 1. If regret is given by (2) with 𝛼𝑖 ≥ 0, 𝛽𝑖 ∈ [0,1], then it satisfies assumption 2.
Also, if regret satisfies assumption 2, then it also satisfies assumption 1.

A.2.1 Standard assumptions on preferences versus single-agent regret versus
strategic regret: additional comparative results

This section presents more general results on the comparison of NE, single-agent RE, and
strategic RE.

Equilibrium outcomes. Proposition 4 shows that the result of Proposition 1 (i.e., that
regret does not alter the set of pure equilibria) generalizes to 𝑛-player games with weaker
assumptions on regret.

Proposition 4. Under assumption 1(i-ii) and for any game 𝐺, the set of pure NE and
the set of pure RE coincide, 𝑃𝑁𝐸(𝐺) = 𝑃𝑅𝐸(𝐺).

Rationalizable outcomes. Conventions: throughout ⊂ (⊃) denotes weak subset
(superset); convex (concave), means weakly convex (concave).

Before proceeding, we need to define some standard concepts. Let 𝒜 denote the
collection of all Cartesian subsets of 𝑆, that is 𝒜 := {𝐴 ⊂ 𝑆 : ∃𝐴1 ⊂ 𝑆1, 𝐴2 ⊂
𝑆2 such that 𝐴 = 𝐴1 × 𝐴2}. For 𝐴 ∈ 𝒜, 𝑖 ∈ 𝑁 , 𝑤 ∈ {𝑢,𝑚} denote by 𝑁𝐷𝑤;𝑖(𝐴) ⊂ 𝐴𝑖

the set of actions in 𝐴𝑖 that are not (strictly) dominated when only actions in 𝐴𝑖 and
conjectures over 𝐴𝑗 are considered, under baseline (𝑤 = 𝑢) or modified (𝑤 = 𝑚) pay-
offs, respectively, and let 𝑁𝐷𝑤(𝐴) = 𝑁𝐷𝑤;1(𝐴) × 𝑁𝐷𝑤;2(𝐴). Also, define recursively
𝑁𝐷𝑘

𝑤(𝐴) = 𝑁𝐷𝑤

(︁
𝑁𝐷𝑘−1

𝑤 (𝐴)
)︁

with 𝑁𝐷0
𝑤(𝐴) = 𝐴. Similarly, define 𝑃𝑁𝐷𝑤(𝐴) ⊂ 𝐴 to
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be the subset of action profiles such that no action of the profile is dominated when only
pure dominance is used (i.e., when a pure action is said to be dominated only if it is so by
another pure action). Then, define the sets of 𝑢 and 𝑚-rationalizable action profiles, as
well as dominance solvable games as follows.

Definition 6. Given a two-player game 𝐺 := ⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 , (𝑚𝑖)𝑖∈𝑁⟩, for 𝑤 ∈
{𝑢, 𝑚}, 𝑁𝐷∞

𝑤 (𝑆) := ∩𝑘≥1𝑁𝐷𝑘
𝑤(𝑆) is the set of 𝑤-rationalizable action profiles. Similarly,

define 𝑃𝑁𝐷∞
𝑤 (𝑆) := ∩𝑘≥1𝑃𝑁𝐷𝑘

𝑤(𝑆) to be the set of 𝑤-pure rationalizable action profiles.

Definition 7. A two-player game 𝐺 is 𝑤-dominance solvable if the set 𝑁𝐷∞
𝑤 (𝑆) is a

singleton. Similarly, it is 𝑤-pure dominance solvable if 𝑃𝑁𝐷∞
𝑤 (𝑆) is a singleton.

Given a game 𝐺, denote by DR(𝐺) ⊂ R3 the domain of 𝑟1 and 𝑟2 in game 𝐺, that is,

DR(𝐺) :=

⎧⎨⎩(𝑥,𝑦,𝑧) ∈ R3|∃(𝑠1,𝑠2) ∈ 𝑆, 𝑖,𝑗 ∈ {1,2}, 𝑗 ̸= 𝑖 such that
𝑥 = 𝑢𝑖(𝑠𝑖,𝑠𝑗), 𝑦 = 𝑢𝑏𝑟

𝑖 (𝑠𝑗), 𝑧 = 𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

⎫⎬⎭ .

Proposition 5 then draws connections between the set of rationalizable action profiles
(and more generally 𝑘 rounds of iterated deletion of strictly dominated actions) under
baseline payoffs and the rationalizable action profiles when modified payoffs are used
instead.

Proposition 5. Consider a two-player game 𝐺 := ⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 , (𝑚𝑖)𝑖∈𝑁⟩ and let
regret satisfy assumption 1. Then, for every 𝑘 ∈ N∪ {∞},𝐴 ∈ 𝒜 the following statements
hold:

(i) If 1(ii) is satisfied with the regret of each player 𝑖 constant in 𝑢𝑏
𝑖 (single-agent regret),

then 𝑃𝑁𝐷𝑘
𝑢(𝐴) = 𝑃𝑁𝐷𝑘

𝑚(𝐴).

(ii) If for some player 𝑖 assumption 2 is satisfied for 𝛽𝑖 > 0, so that 1(ii) is satisfied with
regret decreasing in 𝑢𝑏

𝑖 (strategic regret) in a subset of the domain DR, then it can
be that 𝑃𝑁𝐷𝑘

𝑢(𝐴) ̸= 𝑃𝑁𝐷𝑘
𝑚(𝐴).

(iii) Assume that for each player 𝑖, 𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
is concave (resp. convex) in 𝑢𝑖. If

assumption 1(ii) is satisfied with the regret of player 𝑖 constant in 𝑢𝑏
𝑖 (single-agent

regret), then 𝑁𝐷𝑘
𝑢(𝐴) ⊃ 𝑁𝐷𝑘

𝑚(𝐴) (resp. 𝑁𝐷𝑘
𝑢(𝐴) ⊂ 𝑁𝐷𝑘

𝑚(𝐴)).

(iv) If assumption 2 is satisfied for 𝛽𝑖 > 0, so that 1(ii) is satisfied with regret decreasing
in 𝑢𝑏

𝑖 (strategic regret) in a subset of the domain DR, then the conclusions of point
(iii) need not follow.

Remark: If regret is given by (2), for 𝛽𝑖 = 0, 𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
is linear in 𝑢𝑖, so 𝑁𝐷𝑘

𝑢(𝐴) =
𝑁𝐷𝑘

𝑚(𝐴).
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Single–agent regret makes little to no difference compared to baseline preferences. Parts
(i) and (iii) show that in every game, the rationalizable outcomes under single-agent regret
are closely connected to those under standard assumptions on preferences. Particularly,
part (iii) says that under the concavity assumption, rationalizability under single–agent
regret rules out all outcomes that rationalizability under baseline preferences does. Thus
for dominance solvable (under baseline payoffs) games the NE and the single-agent RE
coincide. Conversely, under the convexity assumption, if a game is dominance solvable
under single-agent regret, then the unique RE is also the unique NE. Under our canonical
specification of regret given in (2), rationalizability delivers the same result regardless of
whether baseline or single-agent regret payoffs are used. Thus, the result in section 4 that
the traveler’s dilemma is dominance-solvable under single-agent regret—just like under
baseline payoffs—is not a coincidence. Last, part (i) says that rationalizability has the
same implications under single-agent regret as it does under baseline payoffs regardless of
the curvature of 𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
in 𝑢𝑖 when only pure dominance is used.

On the other hand, strategic regret can alter the set of rationalizable outcomes.
Particularly, it can lead to equilibria different from the NE even when a game is dominance
solvable (in baseline payoffs terms). The traveler’s dilemma presented in section 4 is an
example of a dominance solvable (under baseline payoffs) game where strategic regret
gives rise to new RE.

A.2.2 Invariance to positive affine transformations of baseline payoffs

I conclude this section examining the invariance of RE to positive affine transformations
of the baseline payoffs.

Definition 8. Games 𝐺1 := ⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢1
𝑖 )𝑖∈𝑁 , (𝑚1

𝑖 )𝑖∈𝑁⟩ and 𝐺2 := ⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢2
𝑖 )𝑖∈𝑁 ,

(𝑚2
𝑖 )𝑖∈𝑁⟩ are 𝑢 (resp. 𝑚)-strategically equivalent if for each player 𝑖 ∈ 𝑁 the baseline

(resp. modified) payoff function 𝑢2
𝑖 (resp. 𝑚2

𝑖 ) is a positive affine transformation of the
baseline (resp. modified) payoff function 𝑢1

𝑖 (resp. 𝑚1
𝑖 ).

Proposition 6. Consider two games 𝐺1 := ⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢1
𝑖 )𝑖∈𝑁 , (𝑚1

𝑖 )𝑖∈𝑁⟩ and 𝐺2 :=
⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢2

𝑖 )𝑖∈𝑁 , (𝑚2
𝑖 )𝑖∈𝑁⟩ and let each player 𝑖’s regret be given by (2) (where 𝛼𝑖’s

and 𝛽𝑖’s do not depend on the game). If 𝐺1 and 𝐺2 are 𝑢-strategically equivalent, then
they are also 𝑚-strategically equivalent.

Proposition 6 asserts that under our canonical specification of regret, theoretical
predictions (including best-response correspondences, rationalizable outcomes and RE) are
invariant to affine transformations of baseline payoffs. Given that theoretical predictions
under baseline payoffs are also invariant to affine transformations of baseline payoffs, it
follows that an affine transformation of baseline payoffs will not affect the analysis of
sections 4 and A.1.2.
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B Additional analyses of experimental data

B.1 Affective reaction and control item responses

Figure 10 presents the mean responses to the affective reaction and control item of the RBS.
These suggest that in all games there is on average a significant (anticipated) emotional
reaction to the outcome of the game.

Figure 10: RBS results: affective reaction and control items
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Notes: bars of mean responses with standard error intervals.

We also verify that responses to the affective reaction item are negatively correlated
with those to the control item, as seen in Table 8.

B.2 Predictive power over incentivized play of RBS survey responses to STR
versus SAR items

We run regressions to compare the predictive power of RBS survey responses to STR
versus SAR items over incentivized play. Since STR—but not SAR—games allow for
blame as described in the theory, responses to STR items should be a better predictor
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Table 8: RBS results: correlation between affective reaction and control item responses

Correlation coefficient
Game

SAR 1 SAR2 STR1 STR2
Pearson -0.26 -0.39 -0.22 -0.24

Kendall’s 𝜏𝑏 -0.25 -0.28 -0.29 -0.18
Notes: all coefficients are significant at the 1% level based on two-sided tests under the asymptotic
𝑡 approximation (with a continuity correction).

than responses to SAR items. For each game type (SAR and STR) and each subject 𝑖, an
index of blame intensity is calculated as a single principal component from the subject’s
10 responses to items 2 through 5 and 7 in that game type (5 items times 2 games per
game type):

BISAR𝑖 := PC

⎛⎜⎝
⎧⎨⎩ regret𝑖𝑆𝐴𝑅𝑗, blame𝑖𝑆𝐴𝑅𝑗, internal attribution𝑖𝑆𝐴𝑅𝑗,

external attribution𝑖𝑆𝐴𝑅𝑗, choice between counterfactuals𝑖𝑆𝐴𝑅𝑗

⎫⎬⎭
𝑗=1,2

⎞⎟⎠ ,

BISTR𝑖 := PC

⎛⎜⎝
⎧⎨⎩ regret𝑖𝑆𝑇 𝑅𝑗, blame𝑖𝑆𝑇 𝑅𝑗, internal attribution𝑖𝑆𝑇 𝑅𝑗,

external attribution𝑖𝑆𝑇 𝑅𝑗, choice between counterfactuals𝑖𝑆𝑇 𝑅𝑗

⎫⎬⎭
𝑗=1,2

⎞⎟⎠ .

BISTR is the blame index also used in the main part of the analysis in section 5, while
BISAR the corresponding index when SAR games are used instead of STR ones. BISAR
(resp. BISTR) stands for blame index SAR (resp. blame index STR). After each principal
component is calculated, it is normalized between 0 and 1 to produce the corresponding
blame index.

Indeed, Table 9 shows that subjects with higher BISTR—but not BISAR—choose
on average higher numbers in the traveler’s dilemma.60 The coefficient on BISTR shows
that the participant with the highest index is expected to choose a number higher by
20-35 (depending on the bonus/penalty parameter) than the the number chosen by the
participant with the lowest index. Similarly, Table 10 shows BISTR to be a better
predictor of behavior in the stag hunt game than SAR, consistent with what we have seen
in Figure 7.

B.3 Principal component analysis loadings

Table 11 presents the loadings in the principal component analysis that produced the
indices BISAR and BISTR.

60The estimated coefficients of BISAR are smaller and not statistically significant.
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Table 9: Linear regressions of number chosen in the traveler’s dilemma on blame indices

𝑏 5 10 15 20 30 40 50 60
BISAR 14.22 12.89 6.52 13.41 14.20 29.68 10.89 22.99

(11.34) (10.88) (12.53) (13.25) (13.86) (15.63) (16.17) (17.04)
BISTR 21.84 21.74 18.18 28.08 34.39 32.88 29.80 29.21

(9.93) (9.25) (10.57) (11.69) (12.04) (12.91) (12.77) (13.65)
Intercept 158.77 154.37 151.58 132.82 119.07 102.11 100.70 93.78

(7.93) (7.17) (7.94) (8.67) (8.87) (8.88) (8.88) (9.25)
𝑁 202 202 202 202 202 202 202 202

Notes: coefficients with heteroscedasticity-consistent standard errors (HC3) clustered at the
subject level in parentheses.

Table 10: Logistic regressions of the stag hunt action (stag = 1) on blame indices

Stag cost (𝑐) 10 20 30 40 50 60 70 80
BISAR −3.79 −2.16 −0.73 −0.74 −0.98 −1.57 −1.98 −2.27

(4.43) (1.90) (1.16) (1.03) (1.02) (1.09) (1.16) (1.26)
BISTR 5.94 0.73 1.60 1.86 2.15 1.70 1.78 1.38

(4.52) (1.66) (0.97) (0.87) (0.88) (0.92) (0.96) (1.01)
Intercept 3.14 3.10 0.47 −0.40 −1.23 −1.28 −1.38 −1.35

(1.74) (1.14) (0.64) (0.60) (0.65) (0.70) (0.74) (0.79)
𝑁 100 100 100 100 100 100 100 100

Notes: coefficients with heteroscedasticity-consistent standard errors (HC3) clustered at the
subject level in parentheses.

Table 11: PCA loadings in BISAR and BISTR

Index Game
RBS item

regret blame internal external choice between
attribution attribution counterfactuals

BISAR SAR 1 -0.21 0.35 -0.37 0.41 -0.4
SAR 2 -0.19 0.29 -0.23 0.35 -0.26

BISTR STR 1 -0.29 0.31 -0.28 0.38 -0.37
STR 2 -0.26 0.29 -0.3 0.36 -0.3

Notes: before the principal component analysis was performed, responses to each of the 20 items
were centered and scaled to have zero mean and unit variance.

B.4 Additional test on the predictive power of RBS survey responses over
behavior in the stag hunt game

Using Fisher’s exact test, Table 12 verifies the result of Table 5 that subjects with high
Blame Index choose stag more frequently than subjects with low Blame Index.
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Table 12: Behavior of high versus low Blame Index subjects in the stag hunt game: Fisher’s
exact one-sided tests

Stag cost (𝑐) 10 20 30 40 50 60 70 80
𝑝-value 0.247 0.357 0.184 0.053 0.05 0.184 0.171 0.602

B.5 Additional tests on the relationship between behavior in the traveler’s
dilemma and behavior in the stag hunt game

Table 13 shows that the results of Table 6 are robust when we instead use a non-parametric
test. Namely, for 𝑏 and 𝑐 not too low, participants that played stag in the stag hunt game
chose higher numbers in the traveler’s dilemma. Table 13(a) shows that the difference is
large: the median number chosen by the former is larger by about 30 to 100 (compared to
the median number chosen by the latter) depending on the parameters of the games.

B.6 Order effects

Table 14 shows that the null hypothesis that no order/priming effects exist for the traveler’s
dilemma cannot be rejected at the 10% level for any value of 𝑏. Similarly, Table 15 and
Figure 11 shows that the null hypothesis that no order/priming effects exist for the stag
hunt game cannot be rejected for any value of 𝑐. Filling in the RBS questionnaire before
playing the traveler’s dilemma and stag hunt game does not seem to affect behavior.

Figure 11: Order effects in the stag hunt game
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Table 13: Number chosen in the traveler’s dilemma: participants who played stag in the stag
hunt game versus participants that played hare

(a) Difference in median number chosen (i.e., median number chosen by those that played stag minus the
median number chosen by those that played hare)

Stag cost (𝑐)
10 20 30 40 50 60 70 80

5 48 0.5 4 0 4 0 0 0.5
10 27.5 26.5 19 19 35 11 1 10.5

Bonus/ 15 -25 -2 33 29 40 26 25 28
penalty 20 -1 28 48 38 42 29 28 26.5

(𝑏) 30 5 45 49 49 70 51 55 55
40 -20.5 34.5 60 62 72 68 61 71.5
50 -47.5 17.5 33 50 69 69 69 87
60 -50.5 -10.5 20 54 60 60 89 102.5

(b) Wilcoxon-Mann-Whitney one-sided 𝑝-values

Stag cost (𝑐)
10 20 30 40 50 60 70 80

5 0.39 0.56 0.25 0.49 0.08 0.57 0.67 0.38
10 0.51 0.1 0.06 0.26 0 0.1 0.23 0.1

Bonus/ 15 0.97 0.68 0.06 0.14 0 0.02 0.07 0.03
penalty 20 0.71 0.24 0.03 0.12 0 0.04 0.07 0.03

(𝑏) 30 0.54 0.2 0.01 0.01 0 0 0.01 0
40 0.74 0.23 0.01 0 0 0 0 0
50 0.67 0.19 0.01 0 0 0 0 0
60 0.66 0.43 0.12 0 0 0 0 0

Notes: the sample size for each cell in each table is 100 participants. In the Wilcoxon-Mann-
Whitney test, the alternative hypothesis is that if we randomly select a participant that played
stag and one that played hare, the probability that the former chose a higher number in the
traveler’s dilemma (than the latter) is higher than the probability that the latter chose a higher
number in the traveler’s dilemma (than the former).

C Participant instructions (for stag hunt treatment)

This section presents the participant instructions. After the instructions were read, the
ability of participants to read two-player game matrices was tested before they completed
any survey or played any game. Before playing the traveler’s dilemma, volunteer’s dilemma,
and stag hunt game, participants answered comprehension questions on how the game
works.61 The instructions follow:
“Welcome to our experiment!

61In all comprehension tests, only after they answered correctly were the subjects allowed to proceed.
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Table 14: Order effects in the traveler’s dilemma: Kolmogorov-Smirnov test 𝑝-values

𝑏
5 10 15 20 30 40 50 60

0.168 0.187 0.287 0.305 0.995 0.108 0.314 0.354
Notes: for each value of 𝑏, the null hypothesis is that the numbers chosen in the traveler’s
dilemma in the treatment where participants answered the SAR portion of the RBS first are
drawn from the same distribution as the numbers chosen in the treatment where participants
first played the traveler’s dilemma and stag hunt game, and then completed the SAR portion of
the RBS. Since the distributions are discrete, simulated (two-sided) 𝑝-values are reported with
10,000 replicates used in the Monte Carlo simulation.

Table 15: Order effects in the stag hunt game: exact test two-sided 𝑝-values

𝑐
10 20 30 40 50 60 70 80

Fisher’s exact test 1 0.475 0.377 0.842 0.839 1 0.812 1
Boschloo’s test 1 0.416 0.334 0.832 0.824 1 0.775 1

Notes: for each value of 𝑐, the null hypothesis is that the percentage of participants that play
stag in the treatment where participants answered the SAR portion of the RBS first is equal
to the corresponding percentage in the treatment where participants first played the traveler’s
dilemma and stag hunt game, and then completed the SAR portion of the RBS.

C.1 General guidelines

During this experiment you and other participants will be asked to answer questions and
make decisions in various different settings. In the end of the experiment you will receive a
sum of money that will depend both on your decisions and the other participants’ decisions
during the experiment. Therefore, it is important that you read these instructions carefully,
so that you can make informed decisions during the experiment.

The experiment will last approximately 90 minutes; even if a participant finishes
earlier, they will have to wait until the experiment has concluded to receive their payment.
Thus, it is best to spend your time considering carefully the different scenarios presented
in the experiment.

No communication with the other participants is allowed during the experiment. Any
participant who fails to follow this rule will be excluded from the experiment and will
receive no payment. Should you have any questions, please raise your hand.

During the experiment, the currency that is used will not be dollars but points. Your
earnings will therefore initially be calculated in points. The total number of points that
you accumulate during the experiment will be paid to you in dollars (you will get a receipt
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which you will then bring to the Office of the Bursar to receive money) at a rate of:

1 point = 0.04 dollars (25 points = 1 dollar).

C.2 What is a game?

A game is a situation where each of multiple (2 or more) participants makes decisions
(independently and privately) and the number of points that each participant earns
depends (based on well-defined rules) on the actions of that participant and the actions of
the other participants in the game.

When there are two participants that take part in a game, it is sometimes (but not
always) useful to present that game in a table. For example, a game with two players
where each player has 3 actions to choose from can be represented as follows.

𝐿 𝑀 𝑅

𝑇 𝑎1,𝑎2 𝑏1,𝑏2 𝑐1,𝑐2

𝐶 𝑑1,𝑑2 𝑒1,𝑒2 𝑓1,𝑓2

𝐵 𝑔1,𝑔2 ℎ1,ℎ2 𝑖1,𝑖2

where 𝑎1,𝑎2,𝑏1,𝑏2, . . . ,𝑖1,𝑖2 are some numbers that differ from game to game (in a
specific game you will see what these numbers are).

In this game, the row player has three actions to choose from:, 𝑇 , 𝐶, and 𝐵. The
column player also has three actions to choose from, 𝐿, 𝑀 , and 𝑅. Thus, there are
3 × 3 = 9 possible outcomes in this game (e.g., a possible outcome is that the row player
chooses 𝐶 and the column player chooses 𝑅).

Each of the nine cells inside the table then gives the amount of points each player will
earn in each possible outcome of the game. The first number in the cell is the amount
of points earned by the row player and the second number in the cell is the amount of
points earned by the column player. For example, if the row player chooses action 𝐶 and
the column player chooses action 𝑅, then the row player earns 𝑓1 points and the column
player earns 𝑓2 points from this game.

C.3 Types of settings and questions that you will face during the experiment

There are two types of items in this experiment. You will first complete some items of
the first type, then some of the second, and finally again some of the first type. Before
completing items you will sometimes be asked to answer questions that will test your
understanding of the item. Only after you have answered correctly will you be allowed to
complete the items.

In the first item type, a hypothetical scenario is described to you and you are asked
to describe your thoughts, feelings and emotions in that scenario. You will do so by
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denoting your level of agreement with various statements. For this type of item, you will
be required to spend at least 3 minutes on a scenario before you can proceed to the next
scenario (but you are free to spend more than 3 minutes). The button “Continue” will
only appear on your screen after said amount of time has passed.

In the second item type, you are randomly matched with another participant and a
game is described to both of you. Each of you then is asked to individually and privately
choose an action in the game. You will play 3 different games and you will play each
game multiple times. For each of the three games, one of these multiple rounds will be
randomly selected by the computer to be the pay round. You will be rewarded points
only for that pay round (and not for the other times that you played the specific game).
Thus, the total number of points that you accumulate in this experiment will be the sum
of three numbers (one number for each of the 3 games).

Each time that you play a game you are randomly matched with a participant. Thus,
in most cases the participant that you play a game with will not be the same as the
participant(s) that you played that game with before (unless by chance you are again
matched with the same participant(s), which happens with low probability). After you
have finished playing all the rounds of a game, you will see what the participant you were
matched with in each round chose and which round has randomly been chosen to be the
pay round.

C.4 Games that you will play (second item type)

C.4.1 Game 1 (8 rounds)

You will be repeatedly and randomly matched with another participant to play the
following game. Each of you will privately choose a number (integer) between 80 and 200;
that is, any of the following numbers: 80, 81, 82, . . . , 198, 199, 200.

• If you both choose the same number, then each of you earns points equal to that
number.

• If you choose different numbers, then each of you earns points equal to the lowest of
the two numbers plus a bonus or minus a penalty, which is determined as follows:

– if you have chosen the lowest number of the two, then you receive a bonus of
additional 𝑏 points, and the other participant’s points are reduced by a penalty
of 𝑏 points (the value of 𝑏 will change from round to round and will be shown
on everyone’s screen).

– if you have chosen the higher number of the two, then your points are reduced
by a penalty of 𝑏 points, and the other participant receives a bonus of additional
𝑏 points.
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For example, if you choose the number 135, the other participant chooses the number
145, and 𝑏 = 5, then you receive 135 + 5 = 140 points, while the other participant receives
135 − 5 = 130 points.

C.4.2 Game 2 (8 rounds)

You will be repeatedly and randomly matched with 1 other participant (so that you are a
group of 2 people in total) to play the following game.

Both you and the other person in your group will (individually and privately) decide
whether to incur a cost to undertake an action (i.e., invest) that can benefit all the people
in the group. The full benefit from this action is available to all the people in the group if
both people in the group undertake the costly action.

The cost 𝑐 of taking the action will be the same for all people in each group. In the
game each player in the group decides whether to invest by incurring a cost of 𝑐 points
(the value of 𝑐 will change from round to round and will be shown on everyone’s screen).
If a player does not invest, then that player incurs no cost.

If both people in your group decide to invest, both people in the group will receive
200 points. Thus, if both people (in a specific group) invest, then each person (in that
specific group) earns 200 − 𝑐 points.

If in a specific group none or only one person invests, then each person in that group
earns 100 points (minus investment costs, when applicable).

For example, if 𝑐 = 20 and you invest and the other person in your group does not
invest, then you earn 100 − 20 = 80 points and the other person (who does not incur the
cost) earns 100 points.

The game can be presented in a table as follows:

invest not invest
invest 200 − 𝑐,200 − 𝑐 100 − 𝑐,100

not invest 100,100 − 𝑐 100,100

C.4.3 Game 3 (5 rounds)

You will be repeatedly and randomly matched with other participants to play the following
game under various values of the parameter 𝑥 (the value 𝑥 will change from round to
round and will be shown on everyone’s screen).

𝐿 𝑀 𝑁 𝑅

𝑇 500,350 300,345 310,𝑥 320,50
𝐵 300,50 310,200 330,𝑥 350,340
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One of you will randomly be assigned the role of the row player and the other the role
of the column player. All the times that you will play the game you will have the same
role, either row or column player, as determined before the first time that you play the
game.”

Note: The instructions were modified accordingly in the other treatments. For example,
in the four-player volunteer’s dilemma treatment, Game 2 was described as follows:

“You will be repeatedly and randomly matched with 3 other participants (so that you
are a group of 4 people in total) to play the following game.

Both you and each of the other 3 people in your group will (individually and privately)
decide whether to incur a cost to undertake an action (i.e., invest) that can benefit all the
people in the group.

The full benefit from this action is available to all the people in the group if at least
one person from the group undertakes the costly action, and no additional benefit is
accrued if more than one person incurs this cost.

The cost 𝑐 of taking the action will be the same for all people in each group.
In the game each player in the group decides whether to invest by incurring a cost of

𝑐 points (the value of 𝑐 will change from round to round and will be shown on everyone’s
screen). If a player does not invest, then that player incurs no cost.

If at least one person in your group decides to invest, all people in the group will
receive 200 points whether or not they invested themselves.

Thus, if at least one person (in a specific group) invests, then any person (in that
specific group) who invests earns 200 − 𝑐 points, and any person (in that specific group)
who does not invest earns 200 points.

If in a specific group nobody invests, then each person in that group earns 40 points.
For example, if 𝑐 = 20 and you invest and one more person in your group invests, then

each of the two of you earns 200 − 20 = 180 points and each of the two other people in
your group (who do not incur the cost) earns 200 points.”

D Screenshots from experiment interface

In comprehension tests, when a participant had given a wrong answer to one or more
questions and clicked Continue, she received the following message: “You have answered
some question(s) incorrectly. Please, read the instructions carefully and try again.”
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Figure 12: Game matrix comprehension screenshot

Figure 13: RBS survey for game SAR1 screenshot

Notes: the button Continue appeared in the bottom-right corner of the screen after 3 minutes
had passed.
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Figure 14: Traveler’s dilemma comprehension test screenshot

Figure 15: Traveler’s dilemma choice screenshot
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Figure 16: Stag hunt game comprehension test screenshot

Figure 17: Stag hunt game choice screenshot
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Figure 18: Four-player volunteer’s dilemma comprehension test screenshot

Figure 19: Four-player volunteer’s dilemma choice screenshot
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Figure 20: Kreps game choice screenshot

E Proofs

E.1 Proofs of section 3

Proof of Proposition 1. See section E.3.

Proof of Proposition 2. Instead of part (i), I prove the more general result that if
𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
is additively separable, linear (and non-decreasing) in 𝑢𝑖 and constant in 𝑢𝑏

𝑖 ,
then 𝑁𝐸(𝐺) = 𝑅𝐸(𝐺).62

First step for part (i): Consider a two-player game 𝐺 and take a NE 𝜎* ∈ 𝑁𝐸(𝐺). By
definition of a NE, we have that for every player 𝑖 ∈ 𝑁 and every 𝑠𝑖 ∈ 𝑆𝑖, 𝑠*

𝑖 ∈ supp(𝜎*
𝑖 ),

𝑢𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) ≥ 𝑢𝑖(𝑠𝑖,𝜎

*
𝑗 ), which implies that for every 𝑠𝑖 ∈ 𝑆𝑖, 𝑠*

𝑖 ∈ supp(𝜎*
𝑖 )

𝑚𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) +

∏︁
𝑠𝑗∈𝑆𝑗

𝑟𝑖

(︁
𝑢𝑖(𝑠*

𝑖 ,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),0

)︁
𝜎*

𝑗 (𝑠𝑗)

≥ 𝑚𝑖(𝑠𝑖,𝜎
*
𝑗 ) +

∏︁
𝑠𝑗∈𝑆𝑗

𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),0
)︁

𝜎*
𝑗 (𝑠𝑗).

where the terms 𝑢𝑏
𝑖(𝑠*

𝑖 ,𝑠𝑗) and 𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗) have been replaced with zeros, since 𝑟𝑖 is constant

in 𝑢𝑏
𝑖 . By additive separability, the terms of 𝑟𝑖 depending on 𝑢𝑏𝑟

𝑖 cancel (in the LHS and
RHS). Thus, by separability and linearity of 𝑟𝑖 in 𝑢𝑖, the inequality above can be written

62Notice that for 𝛽1 = 𝛽2 = 0, 𝑟𝑖

(︀
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︀
= 𝛼𝑖

(︀
𝑢𝑏𝑟

𝑖 − 𝑢𝑖

)︀
, which satisfies these assumptions.
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as

𝑚𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) +

∏︁
𝑠𝑗∈𝑆𝑗

[𝜅𝑢𝑖(𝑠*
𝑖 ,𝑠𝑗) − 𝜅𝑢𝑖(𝑠𝑖,𝑠𝑗)] 𝜎*

𝑗 (𝑠𝑗) ≥ 𝑚𝑖(𝑠𝑖,𝜎
*
𝑗 ) =⇒

𝑚𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) + 𝜅

(︁
𝑢𝑖(𝑠*

𝑖 ,𝜎
*
𝑗 ) − 𝑢𝑖(𝑠𝑖,𝜎

*
𝑗 )
)︁

≥ 𝑚𝑖(𝑠𝑖,𝜎
*
𝑗 )

for some 𝜅 ≤ 0, which given that 𝑢𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) ≥ 𝑢𝑖(𝑠𝑖,𝜎

*
𝑗 ) implies that 𝑚𝑖(𝑠*

𝑖 ,𝜎
*
𝑗 ) ≥ 𝑚𝑖(𝑠𝑖,𝜎

*
𝑗 )

for every player 𝑖 and every 𝑠𝑖 ∈ 𝑆𝑖, 𝑠*
𝑖 ∈ supp(𝜎*

𝑖 ), so 𝜎* ∈ 𝑅𝐸(𝐺). Thus, 𝑁𝐸(𝐺) ⊂
𝑅𝐸(𝐺).

Second step for part (i): Now take an action profile 𝜎* ̸∈ 𝑁𝐸(𝐺). Then, there
exists 𝑖 ∈ 𝑁, 𝑠𝑖 ∈ 𝑆𝑖 such that 𝑢𝑖(𝜎*

𝑖 ,𝜎*
𝑗 ) < 𝑢𝑖(𝑠𝑖,𝜎

*
𝑗 ), which means that there exists

𝑠𝑖 ∈ 𝑆𝑖, 𝑠*
𝑖 ∈ supp(𝜎*

𝑖 ) such that 𝑢𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) < 𝑢𝑖(𝑠𝑖,𝜎

*
𝑗 ), so that by the same arguments

as in the first step, 𝑚𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) + 𝜅

(︁
𝑢𝑖(𝑠*

𝑖 ,𝜎
*
𝑗 ) − 𝑢𝑖(𝑠𝑖,𝜎

*
𝑗 )
)︁

< 𝑚𝑖(𝑠𝑖,𝜎
*
𝑗 ) for some 𝜅 ≤ 0,

which given that 𝑢𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) < 𝑢𝑖(𝑠𝑖,𝜎

*
𝑗 ) implies that 𝑚𝑖(𝑠*

𝑖 ,𝜎
*
𝑗 ) < 𝑚𝑖(𝑠𝑖,𝜎

*
𝑗 ). Therefore,

𝑠*
𝑖 ∈ supp(𝜎*

𝑖 ) is not a best-response to 𝜎*
𝑗 under modified payoffs, so 𝜎* ̸∈ 𝑅𝐸(𝐺). Thus,

𝑁𝐸(𝐺) ⊃ 𝑅𝐸(𝐺).
To see why point (ii) holds look at the examples of section 4. Q.E.D.

E.2 Proofs of section 4

Proof of Claim 1. I prove the claim under weaker assumptions; namely, that each
player’s baseline payoff is strictly increasing in (and only dependent on) own monetary
units and regret satisfies assumption 1, with 1(iii) satisfied with the regret of each player
𝑖 constant in 𝑢𝑏

𝑖 (single-agent regret).
Also, for ease of notation I prove the proposition for the specific example of the

traveler’s dilemma described in the text but the proof works the same way for any finite
set of the form {𝑎,𝑎 + 1, . . . ,𝑎 + 𝑚}, 𝑚 ∈ N. Denote by 𝑘𝑖 the number chosen by player 𝑖.

Conjectures with 19 or 20 being the maximum of the support: consider any conjec-
ture of 𝑖 that assigns positive probability to 𝑗 choosing 19 or 20. Notice that 𝑚𝑖(20,𝑘𝑗) =
𝑚𝑖(19,𝑘𝑗) for any 𝑘𝑗 ∈ {11, . . . ,18}, since (i) 𝑢𝑖(20,𝑘𝑗) = 𝑢𝑖(19,𝑘𝑗) for such 𝑘𝑗 by the
rules of the game, (ii) 𝑢𝑏𝑟

𝑖 (𝑘𝑗) by definition only depends on 𝑘𝑗, and (iii) assumption
1(iii) holds with 𝑟𝑖 constant in 𝑢𝑏

𝑖 . Also, 𝑚𝑖(20,𝑘𝑗) < 𝑚𝑖(19,𝑘𝑗) for 𝑘𝑗 ∈ {19,20}, since
(i) 𝑢𝑖(20,𝑘𝑗) < 𝑢𝑖(19,𝑘𝑗) for such 𝑘𝑗, (ii) 𝑢𝑏𝑟

𝑖 (𝑘𝑗) only depends on 𝑘𝑗, and (iii) assumption
1(iii) holds with 𝑟𝑖 constant in 𝑢𝑏

𝑖 . Thus, 20 is not a best-response to any such conjecture,
since 19 delivers a higher (modified) expected payoff given any such conjecture.

Conjectures with 17 or 18 being the maximum of the support: now consider any con-
jecture of 𝑖 that assigns zero probability to 𝑗 choosing 19 or 20 but positive to choos-
ing 17 or 18. Notice that 𝑚𝑖(20,𝑘𝑗) = 𝑚𝑖(18,𝑘𝑗) for any 𝑘𝑗 ∈ {11, . . . ,16}, since (i)
𝑢𝑖(20,𝑘𝑗) = 𝑢𝑖(18,𝑘𝑗) for such 𝑘𝑗 by the rules of the game, (ii) 𝑢𝑏𝑟

𝑖 (𝑘𝑗) by definition
only depends on 𝑘𝑗, and (iii) assumption 1(iii) holds with 𝑟𝑖 constant in 𝑢𝑏

𝑖 . Also,
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𝑚𝑖(20,𝑘𝑗) < 𝑚𝑖(17,𝑘𝑗) for 𝑘𝑗 ∈ {17,18}, since (i) 𝑢𝑖(20,𝑘𝑗) < 𝑢𝑖(17,𝑘𝑗) for such 𝑘𝑗, (ii)
𝑢𝑏𝑟

𝑖 (𝑘𝑗) only depends on 𝑘𝑗, and (iii) assumption 1(iii) holds with 𝑟𝑖 constant in 𝑢𝑏
𝑖 . Thus,

20 is not a best-response to any such conjecture, since 17 delivers a higher (modified)
expected payoff given any such conjecture.

Continuing in the same fashion, we see that 20 is a never-best-response (for either
player). With 20 deleted in the first iteration, 19 is a never-best-response in the second
iteration (where conjectures are constrained to assign probability 0 to 20 being chosen),
and so on. The only rationalizable outcome is the pure NE (11,11). Q.E.D.

Proof of Claim 2. I prove the claim for 𝑖 = 1 and under weaker assumptions, namely,
with 𝑣1(𝑥) being the baseline payoff of player 1 from 𝑥 monetary units where 𝑣1 is (strictly)
increasing. For 𝑠1,𝑠2 ≥ 12 we have that 𝑚1(𝑠1 + 1,𝑠2) − 𝑚1(𝑠1,𝑠2) is equal to

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−̃︀𝑟1 (𝑣1(𝑠2 − 1 + 𝑏) − (𝛽1𝑣1(𝑠1 − 𝑏) + (1 − 𝛽1)𝑣1(𝑠2 − 𝑏)))
+̃︀𝑟1 (𝑣1(𝑠2 − 1 + 𝑏) − (𝛽1𝑣1(𝑠1 − 1 − 𝑏) + (1 − 𝛽1)𝑣1(𝑠2 − 𝑏)))

if 𝑠1 ≥ 𝑠2 + 1

𝑣1(𝑠2 − 𝑏) − ̃︀𝑟1 (𝑣1(𝑠2 − 1 + 𝑏) − 𝑣1(𝑠2 − 𝑏))
−𝑣1(𝑠2) + ̃︀𝑟1 (𝑣1(𝑠2 − 1 + 𝑏) − 𝑣1(𝑠2))

if 𝑠1 = 𝑠2

𝑣1(𝑠2) − ̃︀𝑟1 (𝑣1(𝑠1 + 𝑏) − 𝑣1(𝑠2))
−𝑣1(𝑠1 + 𝑏) + ̃︀𝑟1 (𝑣1(𝑠1 + 𝑏) − 𝑣1(𝑠1 + 𝑏))

if 𝑠1 = 𝑠2 − 1

𝑣1(𝑠1 + 1 + 𝑏) − ̃︀𝑟1 (𝑣1(𝑠2 − 1 + 𝑏) − 𝑣1(𝑠1 + 1 + 𝑏))
−𝑣1(𝑠1 + 𝑏) + ̃︀𝑟1 (𝑣1(𝑠2 − 1 + 𝑏) − 𝑣1(𝑠1 + 𝑏))

if 𝑠1 ≤ 𝑠2 − 2.

The part that depends on 𝛽1 is equal to

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−̃︀𝑟1 (𝑡1) + ̃︀𝑟1 (𝑡2) if 𝑠1 ≥ 𝑠2 + 2

−̃︀𝑟1 (𝑡2) if 𝑠1 = 𝑠2 + 1

0 if 𝑠1 ≤ 𝑠2.

where 𝑡1 := 𝑣1(𝑠2 − 1 + 𝑏) − (𝛽1𝑣1(𝑠1 − 𝑏) + (1 − 𝛽1)𝑣1(𝑠2 − 𝑏)) and 𝑡2 := 𝑣1(𝑠2 − 1 + 𝑏) −
(𝛽1𝑣1(𝑠1 − 1 − 𝑏) + (1 − 𝛽1)𝑣1(𝑠2 − 𝑏)). Notice that 𝑡2 ≥ 𝑡1. Then, the derivative of the
expression in the first case (i.e., 𝑠1 ≥ 𝑠2 + 2) with respect to 𝛽1 is equal to

(𝑣1(𝑠1 − 𝑏) − 𝑣1(𝑠2 − 𝑏)) ̃︀𝑟′
1(𝑡1) − (𝑣1(𝑠1 − 1 − 𝑏) − 𝑣1(𝑠2 − 𝑏)) ̃︀𝑟′

1(𝑡2)

≥ (𝑣1(𝑠1 − 𝑏) − 𝑣1(𝑠2 − 𝑏)) (̃︀𝑟′
1(𝑡1) − ̃︀𝑟′

1(𝑡2))

≥ (𝑣1(𝑠1 − 𝑏) − 𝑣1(𝑠2 − 𝑏)) (̃︀𝑟′
1(𝑡1) − ̃︀𝑟′

1(𝑡1)) = 0,
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where the first equality follows from ̃︀𝑟′
1 ≥ 0 and 𝑣1 being an increasing function and the

second from ̃︀𝑟1(𝑥) being a concave function for 𝑥 ≥ 0, 𝑣1 being an increasing function,
𝑡2 ≥ 𝑡1 and 𝑠1 > 𝑠2. It is trivial that in the second case (i.e., 𝑠1 ≥ 𝑠2 + 1), the expression
is increasing in 𝛽1. In the last case (i.e., 𝑠1 ≤ 𝑠2), there is no room for blame (whether
player 1 plays 𝑠1 or 𝑠1 + 1), and thus, the expression is constant in 𝛽1.

Last, for 𝑠2 = 11, everything follows as above with the only difference that 𝑢𝑏
1𝑟(𝑠2) =

𝑣1(𝑠2), instead of 𝑢𝑏
1𝑟(𝑠2) = 𝑣1(𝑠2 − 1 + 𝑏). For 𝑠1 = 11, 𝑚1(𝑠1 + 1,𝑠2) − 𝑚1(𝑠1,𝑠2) is

independent of, and thus, constant in, 𝛽1.
We have thus shown that 𝑚1(𝑠1 + 1,𝑠2) − 𝑚1(𝑠1,𝑠2) is non-decreasing in 𝛽1 for every

𝑠2, and the claim follows. Q.E.D.

Note: I expect the result to hold also under the canonical ̃︀𝑟𝑖(𝑥) := 𝛼𝑖 max{𝑥,0}
but the fact that ̃︀𝑟𝑖(𝑥) is constant in 𝑥 for 𝑥 ≤ 0 in that case creates the following
complication. When 𝑡2 > 0 ≥ 𝑡1, the expression in the first case (i.e., 𝑠1 ≥ 𝑠2 + 2) is equal
to −̃︀𝑟1 (𝑡1) + ̃︀𝑟1 (𝑡2) = ̃︀𝑟1 (𝑡2), which is—locally—decreasing in 𝛽1 (until the increase in 𝛽1

makes 𝑡2 ≤ 0). In the case 𝑡1 ≥ 0 we still get that −̃︀𝑟1 (𝑡1) + ̃︀𝑟1 (𝑡2) is increasing in 𝛽1.
For 𝑡2 ≤ 0, −̃︀𝑟1 (𝑡1) + ̃︀𝑟1 (𝑡2) is constant in 𝛽1.

Given a conjecture 𝜎2, whether the best-response 𝑃𝐵𝑅1(𝜎2) of player 1 moves in the
same direction as 𝛽1 depends on the sign of 𝑚1(𝑃𝐵𝑅1(𝜎2) + 1,𝜎2) − 𝑚1(𝑃𝐵𝑅1(𝜎2),𝜎2).
Thus, given that the complication arises only in small intervals of the domain of ̃︀𝑟1 and
also that 𝑃𝐵𝑅1(𝜎2) ≥ 𝑠2 + 2 with low probability (the probability taken over 𝜎2), we can
expect the claim to still hold despite the complication.

Proof of Claim 3. By Proposition 1 𝑃𝑁𝐸(𝑆𝐻) = 𝑃𝑅𝐸(𝑆𝐻). Mixing is optimal for
player 𝑖 if and only if

1 − 𝜎*
𝑗 (hare) − 𝜎*

𝑗 (hare) (𝜆 + 𝛼𝑖 max{𝜆 − 𝛽𝑖(1 + 𝜆), 0}) =(︁
1 − 𝜎*

𝑗 (hare)
)︁

[1 − (1 + 𝛼𝑖)Λ + 𝛼𝑖𝛽𝑖 max{Λ − 1, 0}] ,

which gives

BAS𝑖 = (1 + 𝛼𝑖)Λ − 𝛼𝑖𝛽𝑖 max{Λ − 1, 0}
𝜆 + 𝛼𝑖 max{𝜆 − 𝛽𝑖(1 + 𝜆), 0} + (1 + 𝛼𝑖)Λ − 𝛼𝑖𝛽𝑖 max{Λ − 1, 0}

=
(︃

1 + 𝜆 + 𝛼𝑖 max{𝜆 − 𝛽𝑖(1 + 𝜆), 0}
(1 + 𝛼𝑖)Λ − 𝛼𝑖𝛽𝑖 max{Λ − 1, 0}

)︃−1

∈ (0,1).

Then, part (i) follows since given 𝛼𝑖 ≥ 0 and 𝛽𝑖 ∈ [0,1], 𝜆 + 𝛼𝑖 max{𝜆 − 𝛽𝑖(1 + 𝜆), 0} is
increasing in 𝜆 and (1 + 𝛼𝑖)Λ − 𝛼𝑖𝛽𝑖 max{Λ − 1, 0} is increasing in Λ.
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For part (ii), notice that under Λ > 1 and 𝛽𝑖 ≤ 𝜆/(1 + 𝜆),

𝑑
(︁

𝜆+𝛼𝑖[𝜆−𝛽𝑖(1+𝜆)]
(1+𝛼𝑖)Λ−𝛼𝑖𝛽𝑖(Λ−1)

)︁
𝑑𝛼𝑖

∝[𝜆 − 𝛽𝑖(1 + 𝜆)] [(1 + 𝛼𝑖)Λ − 𝛼𝑖𝛽𝑖(Λ − 1)]

− [Λ − (Λ − 1)𝛽𝑖] [𝜆 + 𝛼𝑖[𝜆 − 𝛽𝑖(1 + 𝜆)]]

− Λ𝛼𝑖[𝜆 − 𝛽𝑖(1 + 𝜆)]

= − 𝛽𝑖(𝜆 + Λ) < 0,

so BAS𝑖 is increasing in 𝛼𝑖 in this case. Notice that Λ > 1 and 𝛽𝑖 ≤ 𝜆/(1 + 𝜆) make
[𝜆+𝛼𝑖[𝜆−𝛽𝑖(1+𝜆)]]/[(1+𝛼𝑖)Λ−𝛼𝑖𝛽𝑖(Λ−1)] “least” decreasing in 𝛼𝑖. Given that it still is
decreasing under these assumptions, it is still decreasing under Λ ≤ 1 and 𝛽𝑖 ≤ 𝜆/(1 + 𝜆),
or Λ > 1 and 𝛽𝑖 > 𝜆/(1 + 𝜆) or Λ ≤ 1 and 𝛽𝑖 > 𝜆/(1 + 𝜆).63

For part (iii) notice that under Λ > 1 and 𝛽𝑖 ≤ 𝜆/(1 + 𝜆),

𝑑
(︁

𝜆+𝛼𝑖[𝜆−𝛽𝑖(1+𝜆)]
(1+𝛼𝑖)Λ−𝛼𝑖𝛽𝑖(Λ−1)

)︁
𝑑𝛽𝑖

∝ − 𝛼𝑖(1 + 𝜆) [(1 + 𝛼𝑖)Λ − 𝛼𝑖𝛽𝑖(Λ − 1)]

+ 𝛼𝑖(Λ − 1) [𝜆 + 𝛼𝑖[𝜆 − 𝛽𝑖(1 + 𝜆)]]

= − 𝛼𝑖(1 + 𝜆)(1 + 𝛼𝑖)Λ + 𝛼𝑖(Λ − 1)𝜆 (1 + 𝛼𝑖)

∝ − (1 + 𝜆)Λ + (Λ − 1)𝜆 = −(𝜆 + Λ) < 0,

so BAS𝑖 is increasing in 𝛽𝑖 in this case. Similarly, it can be checked that under Λ > 1 and
𝛽𝑖 > 𝜆/(1 + 𝜆), BAS𝑖 is decreasing in 𝛽𝑖. The result under Λ ≤ 1 follows easily. Q.E.D.

E.3 Proofs of section A

Proof of Claim 5. The modified payoffs are given in Figure 21.

Figure 21: The Kreps game: modified payoffs

(a) Row player payoffs

L M N R

𝑇 500 300 − 10𝛼1·
max{1−20𝛽1, 0}

310 − 10𝛼1·
max{2−19𝛽1, 0}

320 − 10𝛼1·
max{3−18𝛽1, 0}

𝐵
300−10𝛼1·
(20 − 5𝛽1) 310 330 350

(b) Column player payoffs

L M N R
𝑇 350 345 − 5𝛼2 𝛿 − (350 − 𝛿)𝛼2 50 − 10𝛼2(30 − 29𝛽2)
𝐵 50 − 10𝛼2(29 − 30𝛽2) 200 − 140𝛼2 𝛿 − (340 − 𝛿)𝛼2 340

63This can also be checked directly.
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Clearly, in any mixed RE the row player should be mixing for otherwise the column
player has a unique pure best-response. For mixing by the row player to be optimal, it
must be that 𝜎2(𝐿) > 0, since B dominates T when the column player chooses 𝜎2(𝐿) = 0.
Particularly, if a totally mixed action 𝜎1 : {𝑇,𝐵} → Δ2 of the row player makes L and at
least one of M, N, or R a best-response, then a mixed RE where the row player plays 𝜎1

and the column player mixes between L and some of the other actions exists.
The column player is indifferent between L and M if and only if

0 = 5(1 + 𝛼2)𝜎1(𝑇 ) + [−150 + 10𝛼2 (14 − (29 − 30𝛽2))] (1 − 𝜎1(𝑇 )) ⇐⇒

𝜎1(𝑇 ) = 30 − 𝛼2 (28 − 2(29 − 30𝛽2))
31 − 𝛼2 (27 − 2(29 − 30𝛽2))

= 1 + 𝛼2 − 2𝛼2𝛽2

(1 + 𝛼2)31/30 − 2𝛼2𝛽2
.

The column player is indifferent between L and N if and only if

𝜎1(𝑇 ) = (1 + 𝛼2)(𝛿 − 50)/300 − 𝛼2𝛽2

1 + 𝛼2 − 𝛼2𝛽2
.

The column player is indifferent between L and R if and only if

𝜎1(𝑇 ) = (1 + 𝛼2)29 − 30𝛼2𝛽2

(1 + 𝛼2 − 𝛼2𝛽2)59 .

Thus, L is a best-response if and only if

𝜎1(𝑇 ) ≥ max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 + 𝛼2 − 2𝛼2𝛽2

(1 + 𝛼2)31/30 − 2𝛼2𝛽2
,
(1 + 𝛼2)(𝛿 − 50)/300 − 𝛼2𝛽2

1 + 𝛼2 − 𝛼2𝛽2
,

(1 + 𝛼2)29 − 30𝛼2𝛽2

(1 + 𝛼2 − 𝛼2𝛽2)59

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

First I show that R is never part of a mixed equilibrium. For this, it is sufficient to show
that the first term in the brackets above is higher than the last one. This is true if and
only if

1 + 𝛼2 − 2𝛼2𝛽2

(1 + 𝛼2)31/30 − 2𝛼2𝛽2
>

(1 + 𝛼2)29 − 30𝛼2𝛽2

(1 + 𝛼2 − 𝛼2𝛽2)59 ⇐⇒

59(1 + 𝛼2 − 2𝛼2𝛽2)(1 + 𝛼2 − 𝛼2𝛽2)

−[(1 + 𝛼2)31/30 − 2𝛼2𝛽2][(1 + 𝛼2)29 − 30𝛼2𝛽2] > 0 (3)

The partial derivative of the expression in the LHS with respect to 𝛽2 is

59[−2𝛼2(1 + 𝛼2 − 𝛼2𝛽2) − 𝛼2(1 + 𝛼2 − 2𝛼2𝛽2)] + 2𝛼2[(1 + 𝛼2)29 − 30𝛼2𝛽2]

+ 30𝛼2[(1 + 𝛼2)31/30 − 2𝛼2𝛽2]

=59𝛼2(−3 − 3𝛼2 + 4𝛼2𝛽2) + 𝛼2[(1 + 𝛼2)89 − 120𝛼2𝛽2]
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=𝛼2 [116𝛼2𝛽2 − (1 + 𝛼2)89] ≤ 𝛼2 (347𝛼2/15 − 89) ≤ 0

where the first inequality follows from 𝛽2 ≤ 29/30 and the second from 𝛼2 ≤ 1.
Inequality (3) indeed holds for 𝛽2 = 29/30 and 𝛼2 ≤ 1, and thus, for every 𝛽2 ∈

[0,29/30].
Now it remains to see when both M and N are best-responses along with L. This is

true iff

1 + 𝛼2 − 2𝛼2𝛽2

(1 + 𝛼2)31/30 − 2𝛼2𝛽2
= (1 + 𝛼2)(𝛿 − 50)/300 − 𝛼2𝛽2

1 + 𝛼2 − 𝛼2𝛽2
⇐⇒

𝛿 = 𝛿* := 50 + 300 1 + 𝛼2 − 59𝛼2𝛽2/30
(1 + 𝛼2)31/30 − 2𝛼2𝛽2

.

Last, when the column player mixes between L and N, the row player is indifferent
between T and B if and only if

0 =10 (20 + 𝛼1(20 − 5𝛽1)) 𝜎2(𝐿) − 10 (2 + 𝛼1 max{2 − 19𝛽1, 0}) (1 − 𝜎2(𝐿)) ,

and the result follows. Q.E.D.

Proof of Proposition 3. Fix an arbitrary 𝑠 ∈ 𝑆 and 𝑖 ∈ 𝑁 . Any best-response
𝑠′

𝑗 ∈ 𝑃𝐵𝑅𝑗(𝑠𝑖) of player 𝑗 to player 𝑖’s action satisfies 𝑢𝑗(𝑠𝑖,𝑠
′
𝑗) ≥ 𝑢𝑗(𝑠𝑖,𝑠𝑗). This combined

with the fact that the game is WUC implies that 𝑢𝑖(𝑠𝑖,𝑠
′
𝑗) ≤ 𝑢𝑖(𝑠𝑖,𝑠𝑗) for any 𝑠′

𝑗 ∈ 𝑃𝐵𝑅𝑗(𝑠𝑖).
Thus, 𝑢𝑏𝑎

𝑖 (𝑠) ≤ 𝑢𝑖(𝑠), so 𝑢𝑏
𝑖(𝑠) = 𝑢𝑖(𝑠). Q.E.D.

Proofs of Claims 6 and 6’. Claim 6: Volunteering is optimal for 𝑖 if and only if

𝜑1(1 − 𝜉𝑖) + [𝜑1 − 𝛼𝑖(𝜑2 − 𝜑1)] 𝜉𝑖 ≥ 𝜑2𝜉𝑖 + [0 − 𝛼𝑖 max {𝜑1 − 𝛽𝑖𝜑2,0}] (1 − 𝜉𝑖),

or equivalently,

𝜉𝑖 ≤ 𝜉𝑖 := 𝜑1 + 𝛼𝑖 max {𝜑1 − 𝛽𝑖𝜑2,0}
(1 + 𝛼𝑖)(𝜑2 − 𝜑1) + 𝜑1 + 𝛼𝑖 max {𝜑1 − 𝛽𝑖𝜑2,0}

.

Claim 6’(i): Clearly, the only equilibria where (at least) one player volunteers with
probability 1 are the asymmetric pure equilibria where exactly one player volunteers.
Thus, in identifying mixed equilibria, we can restrict attention to equilibria where each
player 𝑖 volunteers with probability 𝑝𝑖 ∈ [0,1).

With uncorrelated strategies, 𝜉𝑖 = 1 −∏︀
𝑗 ̸=𝑖(1 − 𝑝𝑗). Let 𝑉𝑝 := {𝑖 ∈ 𝑁 : 𝑝𝑖 > 0} and

𝑁𝑉𝑝 := 𝑁 ∖ 𝑉𝑝 = {𝑖 ∈ 𝑁 : 𝑝𝑖 = 0}. Then, a player 𝑖 ∈ 𝑉𝑝 is best-responding if and only if

1 − 𝜉𝑖 =
∏︁
𝑗 ̸=𝑖

(1 − 𝑝𝑗), (4)
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which implies that for every pair of players 𝑖,𝑘 ∈ 𝑉𝑝

1 − 𝜉𝑖

1 − 𝜉𝑘

=
∏︀

𝑗 ̸=𝑖(1 − 𝑝𝑗)∏︀
𝑗 ̸=𝑘(1 − 𝑝𝑗)

=⇒ 1 − 𝜉𝑖

1 − 𝜉𝑘

= 1 − 𝑝𝑘

1 − 𝑝𝑖

.

Substituting this back in (4), we get that

1 − 𝜉𝑖 =
∏︁

𝑗∈𝑉𝑝∖{𝑖}

[︃
(1 − 𝑝𝑖)

1 − 𝜉𝑖

1 − 𝜉𝑗

]︃
=⇒ 𝑝𝑖 = 1 −

Δ1/(𝜈−1)
𝑝

1 − 𝜉𝑖

, (5)

where Δ𝑝 := ∏︀
𝑗∈𝑉𝑝

(1 − 𝜉𝑗) and 𝜈 := |𝑉𝑝| the number of players volunteering with positive
probability (notice that in any mixed equilibrium it must be that 𝜈 ≥ 2). 𝑝𝑖 ∈ (0,1) for
every 𝑖 ∈ 𝑉𝑝 if and only if

max
𝑖∈𝑉𝑝

𝜉𝑖 < 1 − Δ1/(𝜈−1)
𝑝 .

Provided that this holds, with 𝑝𝑖’s given by (5), players in 𝑉𝑝 are playing a RE among
themselves. Thus, it remains to make sure that the remaining players also best-respond.
This is true if and only if

1 −
∏︁
𝑗 ̸=𝑖

(1 − 𝑝𝑗) ≥ max
𝑖∈𝑁𝑉𝑝

𝜉𝑖 ⇐⇒ 1 −
∏︁

𝑗∈𝑉𝑝

(︃
Δ1/(𝜈−1)

𝑝

1 − 𝜉𝑗

)︃
≥ max

𝑖∈𝑁𝑉𝑝

𝜉𝑖 ⇐⇒

1 −
Δ𝜈/(𝜈−1)

𝑝∏︀
𝑗∈𝑉𝑝

(1 − 𝜉𝑗)
≥ max

𝑖∈𝑁𝑉𝑝

𝜉𝑖 ⇐⇒ 1 − Δ1/(𝜈−1)
𝑝 ≥ max

𝑖∈𝑁𝑉𝑝

𝜉𝑖.

We conclude that 𝑝 is a mixed equilibrium if and only if max𝑖∈𝑁 𝜉𝑖 ≤ 1 − Δ1/(𝜈−1)
𝑝 and

𝑝𝑖 = 1 −
Δ1/(𝜈−1)

𝑝

1 − 𝜉𝑖

for every player 𝑖 ∈ 𝑉𝑝.

Claim 6’(ii): For 𝛼𝑖 = 𝛼, 𝛽𝑖 = 𝛽, in a symmetric equilibrium

𝑝𝑖 = 1 −
Δ1/(𝑛−1)

𝑝

1 − 𝜉𝑖

= 1 − (1 − 𝜉)𝑛/(𝑛−1)

1 − 𝜉
= 1 − (1 − 𝜉)1/(𝑛−1).

Q.E.D.

Proof of Lemma 1. It is trivial, and thus, omitted.

Proof of Propositions 1 and 4. Given Lemma 1, it suffices to prove Proposition 4.
Assumption 1 implies that for any action profile 𝑠 ∈ 𝑆 the modified payoff of a player is
not higher than the baseline one: ∀𝑠 ∈ 𝑆,𝑖 ∈ 𝑁 𝑚𝑖(𝑠𝑖,𝑠−𝑖) ≤ 𝑢𝑖(𝑠𝑖,𝑠−𝑖). Also, if player 𝑖

(pure) best-responds, she experiences no regret, and thus, the relation holds with equality:
𝑠𝑖 ∈ 𝑃𝐵𝑅𝑖(𝑠−𝑖) =⇒ 𝑚𝑖(𝑠𝑖,𝑠−𝑖) = 𝑢𝑖(𝑠𝑖,𝑠−𝑖).
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First I show that 𝑃𝑁𝐸(𝐺) ⊂ 𝑃𝑅𝐸(𝐺). If there is no pure Nash equilibrium, then it
follows trivially that 𝑃𝑁𝐸(𝐺) ⊂ 𝑃𝑅𝐸(𝐺). Now consider the case where 𝑃𝑁𝐸(𝐺) ̸= ∅;
take an arbitrary equilibrium 𝑠* ∈ 𝑃𝑁𝐸(𝐺). Then for every player 𝑖 ∈ 𝑁 , 𝑢𝑖(𝑠*

𝑖 ,𝑠
*
−𝑖) ≥

𝑢𝑖(𝑠𝑖,𝑠
*
−𝑖) ∀𝑠𝑖 ∈ 𝑆𝑖, and given what we saw above

𝑚𝑖(𝑠*
𝑖 ,𝑠

*
−𝑖) = 𝑢𝑖(𝑠*

𝑖 ,𝑠
*
−𝑖) ≥ 𝑢𝑖(𝑠𝑖,𝜎

*
−𝑖) ≥ 𝑚𝑖(𝑠𝑖,𝜎

*
−𝑖) ∀𝑠𝑖 ∈ 𝑆𝑖,

so 𝑠* ∈ 𝑅𝐸(𝐺). Thus, 𝑃𝑁𝐸(𝐺) ⊂ 𝑃𝑅𝐸(𝐺).
Now, to see that also 𝑃𝑅𝐸(𝐺) ⊂ 𝑃𝑁𝐸(𝐺), suppose by contradiction that ∃𝑠* ∈

𝑃𝑅𝐸(𝐺) ∖ 𝑃𝑁𝐸(𝐺). Since 𝑠* ̸∈ 𝑃𝑁𝐸(𝐺), there exists player 𝑗 ∈ 𝑁 such that
𝑠*

𝑗 ̸∈ 𝑃𝐵𝑅𝑗(𝜎*
−𝑗). It follows that there exists 𝑠′

𝑗 ∈ 𝑆𝑗 ∖ {𝑠*
𝑗} such that 𝑢𝑗(𝑠′

𝑗,𝑠
*
−𝑗) =

max𝑠𝑗∈𝑆𝑗
𝑢𝑗(𝑠𝑗,𝑠

*
−𝑗) > 𝑢𝑗(𝑠*

𝑗 ,𝑠
*
−𝑗). But given assumption 1, we have then that 𝑚𝑗(𝑠′

𝑗,𝑠
*
−𝑗) =

𝑢𝑗(𝑠′
𝑗,𝑠

*
−𝑗) > 𝑢𝑗(𝑠*

𝑗 ,𝑠
*
−𝑗) ≥ 𝑚𝑗(𝑠*

𝑗 ,𝑠
*
−𝑗), which contradicts 𝑠* ∈ 𝑃𝑅𝐸(𝐺). Thus, 𝑃𝑁𝐸(𝐺) ⊃

𝑃𝑅𝐸(𝐺). Q.E.D.

Proof of Proposition 5. In proving Proposition 5, we will use the following Lemma,
which studies the relation between dominance under baseline and dominance under
modified payoffs. Dominance relations between actions are for the most part preserved
when we move from baseline to single–agent regret preferences, which is however not true
with strategic regret.

Lemma 2. Consider a two-player game 𝐺 := ⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 , (𝑚𝑖)𝑖∈𝑁⟩ and let regret
satisfy assumption 1.

(i) If 1(ii) is satisfied with the regret of player 𝑖 constant in 𝑢𝑏
𝑖 (single-agent regret),

then ∀𝑠𝑖,𝑠
′
𝑖 ∈ 𝑆𝑖 and ∀𝐴𝑗 ⊂ 𝑆𝑗

𝑢𝑖(𝑠𝑖,𝑠𝑗) > 𝑢𝑖(𝑠′
𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗 ⇐⇒ 𝑚𝑖(𝑠𝑖,𝑠𝑗) > 𝑚𝑖(𝑠′

𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗,

(ii) If assumption 2 is satisfied for 𝛽𝑖 > 0, so that 1(ii) is satisfied with regret decreasing
in 𝑢𝑏

𝑖 (strategic regret) in a subset of the domain DR, then the above does not follow.

(iii) Assume that 𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
is concave (resp. convex) in 𝑢𝑖. If 1(ii) is satisfied with

the regret of player 𝑖 constant in 𝑢𝑏
𝑖 (single-agent regret), then ∀(𝜎𝑖,𝑠

′
𝑖) ∈ Δ(𝑆𝑖) × 𝑆𝑖

and ∀𝐴𝑗 ⊂ 𝑆𝑗

𝑢𝑖(𝜎𝑖,𝑠𝑗) > 𝑢𝑖(𝑠′
𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗

(resp. ⇐= )=⇒ 𝑚𝑖(𝜎𝑖,𝑠𝑗) > 𝑚𝑖(𝑠′
𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗.

(iv) If assumption 2 is satisfied for 𝛽𝑖 > 0, so that 1(ii) is satisfied with regret decreasing
in 𝑢𝑏

𝑖 (strategic regret) in a subset of the domain DR, then the above does not follow.
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Proof of Lemma 2.

(i) =⇒ : For any 𝑠𝑖,𝑠
′
𝑖 ∈ 𝑆𝑖 and ∀𝐴𝑗 ⊂ 𝑆𝑗 we have that if 𝑢𝑖(𝑠𝑖,𝑠𝑗) > 𝑢𝑖(𝑠′

𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗 ,
then by definition of modified utility ∀𝑠𝑗 ∈ 𝐴𝑗

𝑚𝑖(𝑠𝑖,𝑠𝑗) + 𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
>

𝑚𝑖(𝑠′
𝑖,𝑠𝑗) + 𝑟𝑖

(︁
𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)

)︁
,

Given (a) assumption 1(ii), (b) that regret is constant in its third argument, and (c)
𝑢𝑖(𝑠𝑖,𝑠𝑗) > 𝑢𝑖(𝑠′

𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗, we get that ∀𝑠𝑗 ∈ 𝐴𝑗

𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
≤ 𝑟𝑖

(︁
𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)

)︁
,

which combined with the first inequality implies that ∀𝑠𝑗 ∈ 𝐴𝑗 , 𝑚𝑖(𝑠𝑖,𝑠𝑗) > 𝑚𝑖(𝑠′
𝑖,𝑠𝑗).

⇐= : I prove the contrapositive. For any 𝑠𝑖,𝑠
′
𝑖 ∈ 𝑆𝑖 and ∀𝐴𝑗 ⊂ 𝑆𝑗 if ∃𝑠𝑗 ∈ 𝐴𝑗 such

that 𝑢𝑖(𝑠𝑖,𝑠𝑗) ≤ 𝑢𝑖(𝑠′
𝑖,𝑠𝑗), then for such 𝑠𝑗

𝑚𝑖(𝑠𝑖,𝑠𝑗) + 𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
≤

𝑚𝑖(𝑠′
𝑖,𝑠𝑗) + 𝑟𝑖

(︁
𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)

)︁
,

which given (a) assumption 1(ii), (b) that regret is constant in its third argument,
and (c) 𝑢𝑖(𝑠𝑖,𝑠𝑗) ≤ 𝑢𝑖(𝑠′

𝑖,𝑠𝑗), implies that 𝑚𝑖(𝑠𝑖,𝑠𝑗) ≤ 𝑚𝑖(𝑠′
𝑖,𝑠𝑗) for such 𝑠𝑗.

(ii) Consider the game depicted in Figure 22. With baseline payoffs 𝐵 dominates 𝑇 , but
with modified ones it does not.

Figure 22: Game with baseline payoffs (on the left) and with modified payoffs with strategic
regret (on the right)

𝐿 𝑀 𝑅
𝑇 1,1 1,1 4,2
𝐶 4,3 4,2 -2,1
𝐵 2,1 2,3 5,2

𝐿 𝑀 𝑅
𝑇 1,1 1,1 3,2
𝐶 4,3 4,1 -3,0
𝐵 0,1 0,3 5,1

Notes: the modified payoffs are given by functions (1) and (2) for 𝛼1 = 𝛼2 = 1 and 𝛽1 = 𝛽2 = 1.

(iii) With 𝑟𝑖(𝑢𝑖,𝑢
𝑏𝑟
𝑖 ,𝑢𝑏

𝑖) concave in 𝑢𝑖, as in (i) we get that ∀(𝜎𝑖,𝑠
′
𝑖) ∈ Δ(𝑆𝑖) × 𝑆𝑖 and

∀𝐴𝑗 ⊂ 𝑆𝑗, if 𝑢𝑖(𝜎𝑖,𝑠𝑗) > 𝑢𝑖(𝑠′
𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗 then

𝑚𝑖(𝜎𝑖,𝑠𝑗) +
∏︁

𝑠𝑖∈𝑆𝑖

𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
𝜎𝑖(𝑠𝑖)

> 𝑚𝑖(𝑠′
𝑖,𝑠𝑗) + 𝑟𝑖

(︁
𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)

)︁
∀𝑠𝑗 ∈ 𝐴𝑗.
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Then, to show that 𝑚𝑖(𝜎𝑖,𝑠𝑗) > 𝑚𝑖(𝑠′
𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗, it is sufficient to show that

∀𝑠𝑗 ∈ 𝐴𝑗

∏︁
𝑠𝑖∈𝑆𝑖

𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
𝜎𝑖(𝑠𝑖) ≤ 𝑟𝑖

(︁
𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)

)︁
.

By concavity of 𝑟𝑖 in its first argument (and since 𝑟𝑖 is constant in its third argument)
and using Jensen’s inequality we get that ∀𝑠𝑗 ∈ 𝐴𝑗

∏︁
𝑠𝑖∈𝑆𝑖

𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
𝜎𝑖(𝑠𝑖) ≤ 𝑟𝑖

(︁
𝑢𝑖(𝜎𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠′

𝑖,𝑠𝑗)
)︁

.

Also, by assumption 1(ii) and the fact that 𝑢𝑖(𝜎𝑖,𝑠𝑗) > 𝑢𝑖(𝑠′
𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗, it follows

that for every 𝑠𝑗 ∈ 𝐴𝑗, 𝑟𝑖(𝑢𝑖(𝜎𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)) ≤ 𝑟𝑖(𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)),

which combined with the inequality above gives the desired sufficient condition.

With 𝑟𝑖(𝑢𝑖,𝑢
𝑏𝑟
𝑖 ,𝑢𝑏

𝑖) convex in 𝑢𝑖 I show the contrapositive. Assume 𝑢𝑖(𝜎𝑖,𝑠𝑗) ≤
𝑢𝑖(𝑠′

𝑖,𝑠𝑗), ∃𝑠𝑗 ∈ 𝐴𝑗. Then, for such 𝑠𝑗

𝑚𝑖(𝜎𝑖,𝑠𝑗) +
∏︁

𝑠𝑖∈𝑆𝑖

𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
𝜎𝑖(𝑠𝑖)

≤ 𝑚𝑖(𝑠′
𝑖,𝑠𝑗) + 𝑟𝑖

(︁
𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)

)︁
.

Thus, to show that 𝑚𝑖(𝜎𝑖,𝑠𝑗) ≤ 𝑚𝑖(𝑠′
𝑖,𝑠𝑗), it is sufficient to show that for such 𝑠𝑗

∏︁
𝑠𝑖∈𝑆𝑖

𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
𝜎𝑖(𝑠𝑖) ≥ 𝑟𝑖

(︁
𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)

)︁
,

which follows (similarly as above) by convexity of 𝑟𝑖 combined with Jensen’s inequal-
ity, the fact that 𝑟𝑖 is constant in its third argument, and assumption 1(ii) combined
with the fact that 𝑢𝑖(𝜎𝑖,𝑠𝑗) ≤ 𝑢𝑖(𝑠′

𝑖,𝑠𝑗).

(iv) For a counterexample see point (ii) above, where it can be checked that the regret
of the row player is constant (and thus, linear) in her realized payoff over DR.

Q.E.D.

(i) Given point (i) from Lemma 2 the exact same procedure of iterated deletion of
strictly dominated strategies is used under baseline and modified payoffs.

(ii) Consider the game depicted in Figure 22. With baseline payoffs 𝐵 dominates 𝑇 ,
then 𝑀 dominates 𝑅, then 𝐶 dominates 𝐵, and finally 𝐿 dominates 𝑀 . However,
with modified payoffs no action is dominated.

(iii) If 𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
is concave (resp. convex) in 𝑢𝑖, then by point (iii) of Lemma 2

the exact same procedure of iterated deletion of strictly dominated strategies that
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is used under baseline (resp. modified) payoffs can be used under modified (resp.
baseline) payoffs—and after the procedure is finished, additional actions may be
deleted, thus the inclusion relation.

(iv) For counterexamples see point (ii) above. Q.E.D.

Proof of Proposition 6. For any action profile 𝑠 ∈ 𝑆 the best-responses and the
actions that give the blame payoffs are the same in the two 𝑢-strategically equivalent
games. Then, for modified payoffs ∀𝑠 ∈ 𝑆, 𝑖 ∈ 𝑁 (suppressing functional notation) we
have:

𝑚2
𝑖 (𝑠𝑖,𝑠𝑗) = 𝑢2

𝑖 − 𝛼𝑖 max
{︁
𝑢2;𝑝𝑏𝑟

𝑖 −
[︁
𝛽𝑖𝑢

2;𝑏
𝑖 + (1 − 𝛽𝑖)𝑢2

𝑖

]︁
,0
}︁

= 𝜅𝑖𝑢
1
𝑖 + 𝜆𝑖 − 𝛼𝑖 max

⎧⎪⎨⎪⎩
𝜅𝑖𝑢

1;𝑝𝑏𝑟
𝑖 + 𝜆𝑖 −

[︁
𝛽𝑖

(︁
𝜅𝑖𝑢

1;𝑏
𝑖 + 𝜆𝑖

)︁
+ (1 − 𝛽𝑖)

(︁
𝜅𝑖𝑢

1
𝑖 + 𝜆𝑖

)︁]︁
, 0

⎫⎪⎬⎪⎭
= 𝜅𝑖𝑢

1
𝑖 + 𝜆𝑖 − 𝛼𝑖𝜅𝑖 max

{︁
𝑢1;𝑝𝑏𝑟

𝑖 −
[︁
𝛽𝑖𝑢

1;𝑏
𝑖 + (1 − 𝛽𝑖)𝑢1

𝑖

]︁
, 0
}︁

= 𝜅𝑖

(︁
𝑢1

𝑖 − 𝛼𝑖 max
{︁
𝑢1;𝑝𝑏𝑟

𝑖 −
[︁
𝛽𝑖𝑢

1;𝑏
𝑖 + (1 − 𝛽𝑖)𝑢1

𝑖

]︁
, 0
}︁)︁

+ 𝜆𝑖

= 𝜅𝑖𝑚
1
𝑖 (𝑠𝑖,𝑠𝑗) + 𝜆𝑖,

so an affine transformation of baseline payoffs implies an affine transformation (the same
one) of modified payoffs. Q.E.D.
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